Deep Reinforcement Learning for Quantum
Control

January 28, 2019

Contents
1 Introduction 1
2 Markov Decision Process 4
3 Value function and Quality function 6
4 Deep Q-Learning 8
4.1 Exploration vs Exploitation 11
4.2 Experience Replay 11
4.3 Target Network 12
5 Qubit spin control 13
5.1 State-to-state transfer 13
5.2 Starting from random initial state 18
6 Source Code 20
6.1 Environment Class 20
6.2 Agent Class 22
6.3 Main File 24

1 Introduction

There are three main subfields in modern machine learning: supervised learn-
ing, unsupervised learning, and reinforcement learning. Supervised learning
can be summarized as training a neural network to learn a function that
maps input data to some output. The function is inferred by comparing

the current output of the network to the desired output and updating the
network parameters. Unsupervised learning is used to find commonalities in
the input data, and is used to group, classify or categorize unlabeled data.

Reinforcement learning differs from supervised and unsupervised learning
and is based on letting an actor learn how to behave in a desired way by
taking actions in an environment and observing the effect of the action on
the environment. In order to define the "optimal” behavior of the agent, we
give it feedback in the form of a reward based on the effect of its previous
action. If the action change the environment into a more desirable state we
give it a positive reward, while if it had negative consequences we give it a
negative reward. A schematic of the basic reinforcement learning protocol is
shown in Fig. 1. At time ¢ the environment is in a given state S;. The agent
performs an action A; which induces a state change of the environment from
S; to Siy1. The agent then receives an observation, O, of the new state of
the environment. This observation may be an observation of the full state,
ie. Oy 1 = Spy1, or it can be a partial observation such that it is a subset of
the full state, i.e. Oy11 C Spy1.

As an example task thats suitable for reinforcement learning, consider
the archetypal the cart-pole balancing problem. An inverted pendulum is
attached to a cart as shown in Fig. 2. The task is to balance the inverted
pendulum in its upright position by moving the cart right or left. In this
task the state of the environment would be described by the position of
the cart x, its velocity v,, the angle of the pendulum with respect to the
central axis 6, and the angular momentum of the pendulum w. The state
space would then be S € {z,v,,0,w}. Usually the more of a state the
agent is allowed to observe, the easier it is to learn the desired behavior, so
lets say the agent’s observation is complete O = S. The reward could be
r = +1 for every timestep the pole has not fallen below a certain angle, and
r = —10 if the pole falls down. The reward space is then R € {+1V —10}.
In the simplest case the actions available to the agent could be to apply
a certain amount of force, F,, in the x-direction to either the left or right
side of the cart. The action space is therefore A € {—F, V +F,}. In order
to understand how we could utilize this information to teach the agent to
balance the inverted pendulum we first need to understand the mathematical
foundation of modern reinforcement learning; Markov Decision Processes.

AGENT
—>>

R

t+1 t+1 A

ENVIRONMENT

‘_

St = S

Figure 1: Schematic showing the basic formulation of the reinforcement learn-
ing. An agent performs an action A; which induces a state change of the
environment from S; to S;y;. The agent then receives an observation of the
new state of the environment, O, 1, and a reward, R, that tells it how good
the previous action was.

5
M I

F77 77T 777777777777 777777777777

Figure 2: A schematic illustration of the inverted pendulum cartpole balanc-
ing problem.

Figure 3: An example of a simple Markov chain model. This one have 4
different states, and the transition probability between each state is indicated
by the numbers next to the arrows.

2 Markov Decision Process

A Markov Chain is a stochastic model for the transitions between different
states, where the transition probability only depends on the current state.
The independence of the future state on the full history of the states visited
is called the Markov property. Mathematically it can be defined as

P(St+1|st) = P(St+1|3t7 St—1y--- ,S()), (1)

i.e., the conditional probability for transitioning to the state s;.; from the
state s; does not depend on the preceding states s;_1,s; 2,...,S0. In Fig. 3
a simple Markov chain model is shown. It consist of four different states,
So, 51,5, and S3. The numbers next to the arrows indicate the transition
probability from each state, and the sum of the transition probabilities from
each state is equal to 1. In this example the state S3 is a terminal state,
since the only transition available is to itself. Markov decision processes was
introduced by Richard Bellman in 1957 [1]. A MDP is similar to a Markov
chain, but now transitions between states are mediated by the choice of a set
of actions available at each state. In addition some state transitions result in
a reward, which can be either negative or positive. An example of a Markov
decision process is shown in Fig. 4. Here the actions are chosen by the agent,

Figure 4: An example of a Markov decision process. As in the Markov chain
model there are four possible states, but now each state has between one and
three possible actions available. Some of the actions also result in negative
or positive rewards.

resulting in a stochastic transition to other states. In the state Sy there are
three available actions to choose from, Ay, Ay and Ajs. After choosing the
action Az there is a 10% chance to move to state Ss, receiving a reward
of R = +100, and a 90% chance to move to state S3, receiving R = +10.
Assuming we ended up in state Sy there is only one available action, A;, which
have 50%/50% probability to take us either back to Sy or to the terminal
state S3. Once we reach state S3 there is again only one available action,
which takes us back to S3 with a reward (punishment) of R = —10. In this
example the transitions after choosing an action are stochastic, but a MDP
can also be deterministic, i.e. a given action in a given state always result in
the same transition.

The goal of the agent is to find a policy (what actions to take at each
state), which maximizes the total reward received. In the example given one
might be able to find the optimal policy by inspection, but for larger more
complicated MDPs this approach quickly becomes impossible. Richard Bell-
man found a way to estimate the optimal policy of a MPD, but to understand
it we first need to define the value and quality functions.

3 Value function and Quality function

Consider the 2D gridworld example shown in Fig. 5. Here the state of the
system is given by the coordinates of the grid, e.g. s = (1,1) is the state
in the upper left corner. There are two special states in this example; if
s = (1,4) we get a reward of R = +10, while for s = (3,4) we get a reward
of R = —10. Both of these states are also terminal states, so if we reach that
state the game is over. The state s = (2,2) is also in a sense special, because
it is unattainable. For each state there are four possible actions available to
the actor; it can move in either of the cardinal directions. If the agent move
into any wall, it ends up in the same state it started in. A policy (denoted
m(a|s)) in RL is an instruction to how the agent should act for any given
state. On the left side of Fig. 5 the possible actions available for each state is
indicated by the arrows. This is a random policy, and if the goal is to get to
the state that gives you a reward of R = +10, it is not a very good policy. In
this example the optimal policy is easy to find by inspection, and it is shown
on the left side of Fig. 5.

The value function V,(s) for a given policy 7 is just the expected cumu-
lative reward gained by following the policy from the state s onwards. The
value function for the optimal policy of the gridworld example is shown on
the left side of Fig. 6. Since the maximum reward we can get is R = +10,
and the optimal policy we found always takes us to this state, the value func-
tion is V;(s) = 10 for all states except the state s = (3,4) which have the
value V;(3,4) = —10. An important concept we have to introduce now is the
discount factor v. Because of inflation and the possibility to gain interest on
bank deposits, receiving 100 $ now is better than receiving 100 $ later, and
the discount factor is meant to account for situations where this concept is
applicable. For the cart-pole example from the previous section, the actions
the agent have recently performed are more important to stabilize the in-
verted pendulum than actions it performed 100 timesteps earlier. Applying
a discount factor of v = 0.9 to the value function of the gridworld example
gives us the value function as shown on the right side of Fig. 6.

The Q-function (quality function) is closely related to the value function,
the only difference is that it gives the expected cumulative reward given a
state-action pair. Q.(s,a) gives you the expected cumulative reward given
that you are in state s, take the action a and follow the policy thereafter.
The Q-function for the gridworld example with a discount factor of v = 0.9
is shown in Fig. 7. The grids are now divided in four, one triangle for each
possible action, and the brightness of the color illustrates the Q-function

3 I .10 ‘ 3 Ll — l -10 ‘

Figure 5: A 2D gridworld with 4 x 3 — 1 possible states and two terminal
states, (3,4) and (1,4) which give rewards +10 and —10 respectively. The
arrows indicate the actions available at each state. On the left side we have
a random policy, and on the right side we show the optimal policy.

1] 10| 10 | 10 |+wo%% 11(7.29] 8.1

2110 10 | 10 2 16.56

3110] 10|10 |o@| 3]5.9(6.56/7.29)-06

Figure 6: In this figure we show the same gridworld as above, only now we
have filled in the value of each state, given that we follow the optimal policy.
The right one is shown without a discount factor, and on the left we have
applied a discount factor of v = 0.9.

value for each state-action pair. For a given state, actions that takes us away
from the goal is worse than actions that takes us towards it, and the total
quality of a state increases progressively as we get closer to the goal. The
actions that take us to the negative terminal state are obviously the worst
possible, so they are indicated by a red color. The advantage of describing
the system by the Q-function instead of the value function is that the former
encodes both the value of being in a certain state, and the policy to follow. So
by finding the optimal Q-value of all the state-action pairs,denoted Q% (s, a),
we also find the optimal policy 7*(a|s). If we always choose the brightest
shade of green in each state of Fig. 7 we see that they correspond to the
arrows of the optimal policy shown in Fig. 5.

1 2 3 4

Figure 7: Here we illustrate the quality function of the gridworld example
with a discount factor of v = 0.9. The brightness of the green color indicates
how good the state-action pair is (brighter means higher expected reward).

4 Deep Q-Learning

So how do we find the optimal Q-value? The value function can be defined
as

Vi(se) = E[R(st, ar, Sp1) + YR(St41, Qg1 Se42) + -+ + 7" R(Sr-1, 0721, 57)]
(2)

where R(sy, as, si41) is the reward received by going from state s; to s,41 via
the action a;, and s, is a terminal state. The discount factor is applied for
all the future rewards and E[| indicate the expectation value, in case there
is stochasticity in the transitions. This equation can be rewritten as

Vi(st) = E[R(st, at, Se41) + YV (Se41)] (3)

since
Vﬂ<3t+l) =FK [R<3t+1> at+1, 3t+2) +eee ’Yn_lR(STA; Ar-1, ST)] . (4)

We define the transition probability T'(s;, as, s;+1) as the probability to go
from state s; to s;41 given that we choose the action a;, and write the expec-
tation explicitly as

Va(st) = ZT(Su ag, Se41) [R(Se, g, Se41) +YVa(seq1)] - (5)

St+1

If we have found the optimal Value function 7*(a;|s;) ¥V t the following relation
is obviously true

Vi () = max D Tt ar, se01) [R5, ap, 5001) + 4V (s641)] (6)

St+1

That is, the optimal Value function (maximum expected future reward) is
obtained by taking the action a; that maximizes the expected immediate
reward obtained plus the expected reward from all possible future states
that this action leads to. This equation is known as the Bellman Optimality
Equation [3]. Tt has a very similar form for the Q-value function;

Qr (51, ar) = m?XZT(stu Qt, St41) {R(St; ag, Se+1) + Y m?f Qr(St41, at+1):| .
a at

St+1
(7)
This equation can be used to iteratively update the estimated value for the
optimal Q-value for every possible state-action pair:

erﬂ(st, ar) < ZT(St, ar, Se+1) {R(Su at, Sp+1) + 7 Max er(stJrla Gt+1)1 .
at41

St+1
(8)
Here QF(sy,a;) is the estimate of the Q-value for the kth iteration of the
algorithm. These estimates are guaranteed to converge to the optimal Q-
value, given enough iterations [3]. Once the optimal Q-value is found, the
optimal policy is given by

T (ay]s;) = argmax Q" (s¢, ar) (9)

9

This is an example of dynamic programming; we break down the complex
problem of directly finding the optimal policy to the subproblems of finding
the optimal Q-value for each state-action pair, which we then use to extract
the optimal policy.

Finding the optimal policy using Eq. 8 can certainly be effective for small
systems. However, the algorithm scales very poorly for larger MPDs with
many states and actions. Using it we have to calculate values for all the
state-action pairs. This is certainly possible for the gridworld example intro-
duced earlier, where we have approximately ~ (3 x 4) x 4 = 48 state-action
pairs, but for the inverted pendulum the state-space is continuous so we have
in principle an infinite number of state-action pairs. The solution was intro-
duced by DeepMind in 2015 [4], and involves approximating the Q-function
using a neural network.

Q(s,a) ~ Q(s,a,0). (10)

Here 6 are the parameters of the neural network (its weights and biases).
Neural networks are excellent function approximators, and with this inno-
vation DeepMind was able to greatly outperform humans in several Atari

games [4]. Training a neural network to approximate the Q-values is called
Deep Q-Learning (DQL).

A neural network trains by minimizing a loss function (also called a cost
function). Lets say you want to predict housing prices in Oslo by looking
at features such as the latitude and longitude, number of bedrooms, age of
house, and so on. You have a obtained a certain amount of data where
you have the prices of the houses as well as those features. A common loss
function is the mean squared error (MSE)

MSE = -3 (5 -), (11)

n <
=1

where n is the number of samples, y; is the true housing price (the target
value) and g; is the price predicted by the neural network. The MSE of the
output from a neural network can be minimized by calculating its gradient
and adjusting the weights and biases of the network accordingly. When the
gradient of the MSE is zero we have reached a minimum (hopefully a global
minimum) of the loss function. The details on the special back-propagation
method used for training neural networks can be found in several articles,
blog posts, and books, including [5].

When training the network in DQL, we do not actually know the real
optimal Q-value. However we know that according to the Bellman equation

10

the optimal Q-value satisfies

Q" (st,a,0) = FE [Tt + v ftgilf(Qr(St41, Qg1 9)}) (12)

where we have introduced the short-hand notation r, = R(ay, S, S¢+1). We
can use this estimate as our target when training the network. The MSE loss
function for DQL then becomes

L) = E

2
(Tt + v %fi(Qr (5141, g1, 0) — Q(5¢, a, 9))] (13)

For DQL to work properly and converge to a good estimate of the optimal
Q-values, there are several improvements we can make. Some of these were
introduced in [4], and will be covered in the following.

4.1 Exploration vs Exploitation

When the network is initialized its predictions for the Q-values are of course
totally wrong. So if we always chose the actions that maximizes the current
predicted Q-values, argmax Q*(s;, a;), the agent would not learn anything.

a

We need to let the agertlt explore the state-action space by randomly per-
forming actions. A typical exploration policy is the e-greedy policy. In the
beginning of the training the agent chooses random actions with probability
¢, or the ones with the highest Q-value (greedily) with probability 1 —e. As
time goes and the agent explores more and more of the environment, € is
decreased so that it focuses more on the areas of the state-action space with
higher Q-values. Typically we start by taking completely random actions,
e = 1, and let € converge to some finite number € ~ 0.05, so that there is
always some exploration going on.

4.2 Experience Replay

As seen in Eq. 13 a single update of the network weights requires the follow-
ing input: the current state s;, the action chosen a;, the immediate reward
r, and the next state s;,;. We call this tuple, e; = (s, az, r4, S¢41), that the
network trains on an experience. Instead of training on consecutive experi-
ences we store them all in a memory M; = {eg,e1,...,e:}, and then train
on randomly drawn batches of samples from the memory. The memory have
a finite capacity, and new experiences replace older ones when the memory
is full. There are three main advantages of training on the replay memory:

11

It is data efficient since a single experience can be drawn many times. Only
training on consecutive experiences is inefficient, since the network tends to
forget previous experiences by overwriting them with new experiences. The
time-correlation of consecutive experiences means that the network update
due to the current experience determines what the next experience will be,
so training can be dominated by experiences from a certain area in the state-
action space.

4.3 Target Network

Finally we see that in Eq. 13 the current weights of the network determines
both the target Q-value and the predicted Q-value. Thus every network
update changes the target Q-value that we are trying to reach. This is like
a dog chasing its own tail, and makes it hard for the network weights to
converge. A simple way to circumvent this problem is to use two neural
networks, one for the target Q-value (67), and one for the current Q-value

().

L) =E

2
<7"t + f(ﬁilf(Qr (5141, ary1,07) — Q(5¢, ay, 9))] . (14)

The target network weights #~ are updated to the current network weights,
0~ — 0, every N iteration of the algorithm. A pseudocode of the DQL
algorithm presented in [4] is shown below

12

Initialize memory M
Initialize Q-value network with weights 6
Initialize target Q-value network with weights 6= = 6

for episode = 1 to N, do
Reset environment to initial state s

fort =1t T do
Select random action a; with probability e

Else select a; = argmax Q*(s¢, a;)
at
Execute action in environment and observe r; and s;14

Store experience (S, a;, 1, S¢41) in memory M
Sample random experiences (s;, a;, i, $;+1) from M
If s;41 is a terminal state set y; = r;
Else set y; = r; + v max Q(Sit1,Git1,07)

141

Perform a gradient decent step on (y; — Q(s;, a;, 9))2
Every C steps set 0~ =0

Set s;11 = s; and decrease €

end

end

5 Qubit spin control

5.1 State-to-state transfer
Consider a two level system described by the time-dependent Hamiltonian
H[h,(t)] = —0, — hy(t)og, (15)

where o, and o, are Pauli spin matrices. The goal of our reinforcement
learning agent is to drive the system from some initial state [i;) to a final
state 1), within a given time 7. Its available actions are to choose the value
of the applied magnetic field in the x-direction, h,(t), for each time interval
dt. A suitable reward function for this task is then to give a positive reward
based on the overlap between the target state |¢)¢) and the state at the end
of an episode [¢(7)), F[v(t)] = | (¢f|t(t)) |*. The specific reward shaping
used for the qubit spin control is

1, it Flp(t)] <1-6
r(t) =4 100 Flp(t)] if Flp(t)]>1—6. (16)
100 - Fly(t)] it t=r

Here the reward is —1 for each time-step passed without the state being
within the desired distance (defined by the tolerance). The episode ter-

13

minates if we reach the maximum alloted time 7, or if the overlap becomes
unity, within the desired tolerance. The reward shaping determines what the
agent learns, and one of the main challenges for RL is how to construct the
feedback to make the agent achieve the task we want it to, and minimize the
time it takes to learn it. There are many loopholes the agent can find that
does not fit the task we actually want it to perform. Here we have multiplied
the reward gained by reaching the target state by 100. If instead multiplied
it by 1000, the agent could for example take a 10 steps extra (being rewarded
-1 each time) just so it could go from 0.98 overlap to 0.99. If we multiplied
it by a lower number the opposite would happen; the agent could be content
with 0.95 overlap instead of using one extra time-step to get 0.99 overlap.
Finally, to help the agent learn faster we give it a reward based on the overlap
at t = 7, even if its not within the desired distance. Without this reward
it could take a long time (depending on §) before the agent making random
actions gets any positive reward to guide its behavior. The necessity of this
additional reward depends on what value we choose for §. If for example
0 = 0.05 we can be confident that the agent will sometimes randomly reach
the desired state by random actions, and learn from those experiences. On
the other hand if § ~ 0, that would never happen.

The state of the system at time ¢ in the o, basis is given by

[¥(t)) = co(t) [0) + ea(t) 1), (17)

where |0) is the spin-down eigenstate and |1) is the spin up eigenstate. A full
description of the environment is then given by S = (H[h,(t)], co(t), c1(t),1).
As previously stated, the observations of the agent does not need to be com-
plete. To begin with we choose the observation of the agent to be incomplete,
in the sense that the input to the neural network is

O; = (Re ¢p,Re ¢1,Im ¢g, Im ¢4, 1) . (18)

The coefficients ¢y and ¢; are complex numbers, which is difficult to deal with
for neural networks, so we have to split them up into their real and imaginary
parts. For the simplest case we limit the control field h,(t) to a bang-bang
protocol where the agent chooses between two values, h,(t) = —4 V +4,
for each time interval ¢ — ¢ + dt. We set the initial state |¢;) to be the
ground-state of H = —o, — 2 0,, and the target state the ground-state of
H = —0, + 2 0,. Therefore the goal is to drive the system from the orange
arrow to the green arrow shown in Fig. 8. We set the maximum alloted time
to 7 = 3.75 s, the size of the time-step to dt = 0.05, and § = 0.01. This
gives us a maximum of 75 actions to perform before the episode terminates.

14

1)

Figure 8: Bloch state representation of the initial state (orange) and the
target state (green).

In Fig. 9 we plot the total reward received per episode as a function of the
episode number. The blue dots are the reward received per episode while
the red line is a running average of the 250 neighboring episodes. In the first
4000 episodes there is a lot of exploration, giving us randomly distributed
rewards. There is a clear distinction above and below R ~ 20 between those
episodes that randomly reached the target state before t = 7 and those that
did not. As we tune the exploration parameter down per episode according
to the € — greedy strategy the reward received increases until it converges to
values around R ~ 70. The stochasticity observed even in the final episodes
is due to the fact that we never turn the exploration completely off, the
probability of taking a random action is bounded below at 5%.

In Fig. 10 we show the number of time-steps taken before the episode
terminates. In the early phase, with high exploration probability, the state
transfer is rarely achieved within our desired time. The agent almost always
performs all its maximum allowed 75 steps. As exploration is decreased and
the actions that the agent considers best are more deterministically chosen,
the number of steps per episode decreases. It converges to about 25 steps.
The very minimum amount of steps is 23 steps, which corresponds tot = 1.15
s. The quantum speed limit, which is the minimum amount of time it takes
to perform a state transfer for a given Hamiltonian, is about 7gg;, ~ 1.2 for
this system [2]. This is already quite close (when considering the time-step is
dt = 0.05), but we can get an even better approximation of 7ggy, by reducing

15

0 2000 4000 6000 8000 10000
Episode

Figure 9: Plot of the cumulative reward received for each episode. The blue
dots are the rewards, and the red line is a running average (250 neighbors).

16

m .
a
g 0
i

_qﬂ .

3ﬂ .

0 2000 4000 6000 8000 10000
Episode

Figure 10: Plot of the number of time-steps taken before termination. The
blue dots is the number of steps per episode, and the red line is a running
average (250 neighbors).

17

Figure 11: Two views (180 degrees apart) of the fastest state-to-state transfer
found. The green arrow points to the initial state, while the orange arrow
points to the target state.

The fastest and best solution found by the agent is shown in Fig. 11.
The green arrow points to the initial state, while the orange arrow points
to the target state. The two Bloch-spheres show the same solution, they
have a relative rotation of 180 degrees for better viewing. The blue lines is
a connected line between the states |¢(t,)) for t,, = 0,dt,2dt, ..., and does
not show the exact time evolution of the state. A striking feature is that
even though this is a model free algorithm, meaning that the agent does not
know anything about the system it is influencing, it nevertheless learns that
the fastest way is to travel along the equator.

5.2 Starting from random initial state

We can easily extend the previous analysis, using the exact same agent.
Instead of finding the fastest way from one particular initial state, we can find
the fastest to a target state from any random initial state. The only goal of
the agent is to maximize the expected cumulative future reward for any given
state-action pair, so this type of stochasticity is no hindrance for it. Of course
it takes much longer to learn the optimal sequence of actions for all states
rather than just one. For this task we allowed the agent to take a total of 100
steps, to further increase the probability of gaining positive rewards in the

18

high exploration phase. Except from that we use the exact same algorithm
and parameters as in the previous section, the only difference being that
every time an episode terminate, the next initial state is a random point on
the Bloch-sphere. Fig. 12 shows the total reward received per episode, as
before. Due to the added randomness of the initial condition we no longer
see a clear divide between the episodes where a state transfer was achieved
and those where it was not. However as before we see clear tendencies of
learning as the exploration is tuned down with the number of episodes passed.
The reward converges to a band around R ~ 80 4+ 20. In Fig. 13 we show
the number of steps taken per episode. In the beginning there are a lot of
episodes where the agent performs all of the 100 allowed steps. Nevertheless,
the agent eventually learns to minimize the amount of steps for all states
on the Bloch sphere. It reaches an average of ~ 20 steps per episode. This
is of course averaged over all initial conditions also, so some of the times
the initial condition is already very close to the target state, so that it only
performs one or two actions. After about 3000 episodes, the agent always
reaches the target state before taking all of its allowed steps. Even better,
for the later episodes the maximum amount of steps it needs is about ~ 30
steps, which translates to about t = 1.5 s. And this is for any initial state
on the Bloch-sphere.

Reward
(=]

0 2000 4000 £000 8000 10000
Episode

Figure 12: The total reward received per episode. The initial state is a
random uniformly sampled point on the Bloch sphere.

19

steps

0 2000 4000 £000 8000 10000
Episode

Figure 13: The number of steps the agent took before the episode terminated.
The initial state is a random uniformly sampled point on the Bloch sphere.

6 Source Code

In this project we used QuTiP 4.3.1 to perform the time evolution of the
quantum states, and Keras 2.2.4 for the neural network.

6.1 Environment Class

The following is the code for making a Class environment that the agent can
act in.

class bloch_env:

H1
H2

-sigmaz() - 2*sigmax()
-sigmaz () + 2*sigmax()

def __init__(self):

self.initial_state = self.H1l.groundstate() [1]
self.target_state = self.H2.groundstate() [1]
self.dt = be-2

self .max_steps = 100
self.t_max = self.dtxself.max_steps

20

self .H = [- sigmaz() - 4xsigmax() , - sigmaz() + 4xsigmax()]
self.actions = [4,-4]

self.action_interval = np.array([self.actions[0],self.actions[-1]])
self.reset()

self.action_space = len(self.actions)

self.observation_space = len(self.state)

def reset(self):

self.cum_reward = 0O
self.time = 0
self.alfa = 0

self.q_state = rand_ket(2) # uncomment for random initial state
self.q_state = self.initial_state

self.state_real = np.real(np.reshape(self.q_state[:], [1,2])[0])
self.state_imag = np.imag(np.reshape(self.q_state[:], [1,2]1)[0])

self.state = np.append(self.state_real, self.state_imag)

self.steps 0

return self.state
def time_evolution(self,action):

self .H
self.U

- sigmaz() - action*sigmax()
(-1j*self .Hxself.dt) .expm()

return self.U
def step(self,action):
self.steps += 1

self.time += self.dt
self.alfa = self.actions[action]

21

self.q_state = self.time_evolution(self.actions[action]) *
self.q_state

self .next_state_real = np.real(np.reshape(self.q_statel:],
[1,2]) [0])

self .next_state_imag = np.imag(np.reshape(self.q_state[:],

(1,21 [01)

next_state = np.append(self.next_state_real, self.next_state_imag)
reward = -1

self.overlap = abs(self.q_state.overlap(self.target_state))**2

if self.overlap >= 0.99:

reward = 100*(self.overlap)

done = True

elif self.steps == self.max_steps:

done = True

reward = reward + 100*(self.overlap)

else:
done = False

self.cum_reward += reward

return next_state, reward, done

6.2 Agent Class

The following is the code to create a class in Python that acts as the agent.
Modified from github.com/keon/deep-g-learning.

class DQNAgent:
def __init__(self, state_size, action_size):

self.state_size = state_size

22

self.action_size = action_size
self .memory = deque(maxlen = 2000)
self.gamma = 1

self.epsilon = 1.0

self.epsilon_decay = 0.99995
self.epsilon_min = 0.01

self.learning_rate 0.001

self .model = self._build_model()
self.target_model = self._build_model()

def _build_model(self):

model = Sequential()
model.add (Dense(24, input_dim = self.state_size, activation =

’relu’))
model .add(Dense (48, activation = ’relu’))
model .add(Dense (24, activation = ’relu’))
model .add(Dense(self.action_size, activation = ’linear’))

model.compile(loss=’mse’, optimizer = Adam(lr =
self.learning rate))

return model

def remember(self, state, action, reward, next_state, done):
self .memory.append((state, action, reward, next_state, done))
def act(self,state):

if np.random.rand() <= self.epsilon:

return random.randrange(self.action_size)

act_values = self.model.predict(state)

return np.argmax(act_values[0])

def replay(self, batch_size):

23

minibatch = random.sample(self.memory, batch_size)

for state, action, reward, next_state, done in minibatch:
target = self.target_model.predict(state)

if done:
target [0] [action] = reward

else:
Q_future = max(self.target_model.predict(next_state) [0])
target [0] [action] = reward + Q_futurex*self.gamma

self .model.fit(state, target, epochs = 1, verbose = 0)

def load(self, name):
self.model.load_weights (name)

def save(self,name):
self .model.save_weights(name)

6.3 Main File

The following is the main file where we initialize the agent and the environ-
ment, and make them interact.

env = bloch_env()
state_size = env.observation_space
action_size = env.action_space

32
10000

batch_size
n_episodes

done = False
agent = DQNAgent(state_size, action_size)

agent.epsilon_decay = (0.05)**(1/n_episodes)

score = [None]*n_episodes
for e in range(n_episodes):

24

env.reset ()
np.reshape(state, [1,state_size])

state
state

for t in range(env.max_steps):
action = agent.act(state)
next_state, reward, done = env.step(action)
next_state = np.reshape(next_state, [1,state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print(’episode: {}/{}, score: {:.3}, epsilon:
{:.2}’ .format(e,n_episodes, env.cum_reward, agent.epsilon))
scorel[e] = [env.cum_reward,t]

break

if len(agent.memory) > batch_size:
agent.replay(batch_size)

if e % 10 == 0:
agent.target_model.set_weights(agent.model.get_weights())

if agent.epsilon > agent.epsilon_min:
agent.epsilon *= agent.epsilon_decay

References

[1] RICHARD BELLMAN. A markovian decision process. Journal of Math-

ematics and Mechanics, 6(5):679-684, 1957.

[2] Marin Bukov, Alexandre G. R. Day, Dries Sels, Phillip Weinberg, Ana-
toli Polkovnikov, and Pankaj Mehta. Reinforcement learning in different

phases of quantum control. Phys. Rev. X, 8:031086, Sep 2018.

[3] Aurelién Géron. Hands-on Machine Learning with Scikit-Learn and Ten-

sorflow. O’Reilly Media, Inc.

25

[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,

Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533, February 2015.

Jerome Friedman Trevor Hastie, Robert Tibshirani. The FElements of
Statistical Learning: Data Mining, Inferene, and Prediction. Springer
Science + Business Media.

26

