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1 Information theory and entropy

1.1 Shannon entropy

Claude Shannon, while working at Bell Telephone Laboratories, developed in
1948 a mathematical measure of uncertainty, to quantify the loss of information
in phone-line signals [1]. Supposedly while working on this measure he visited
Von Neumann, and they had the following discussion:

My greatest concern was what to call it. I thought of calling it
information, but the word was overly used, so I decided to call it
uncertainty. When I discussed it with John von Neumann, he had a
better idea. Von Neumann told me, ”You should call it entropy, for
two reasons. In the first place your uncertainty function has been
used in statistical mechanics under that name, so it already has a
name. In the second place, and more important, nobody knows what
entropy really is, so in a debate you will always have the advantage”.

Shannon followed Von Neumann’s advice, and called his measure the Shan-
non entropy. E.T. Jaynes has a clear derivation of Shannon entropy that we will
follow from now on [2]. Assume we have a variable x that can take on discrete
values (x1 . . . xn). The process that determines what value x assumes can be
represented by the corresponding probabilities (p1 . . . pn), where pi represents
the probability that x = xi. The goal is to derive a quantity H(p1 . . . pn), which
uniquely measures the amount of uncertainty represented by this probability
distribution. Or in other words, a function that quantifies our lack of informa-
tion about a system. It might seem difficult to create an unique and consistent
measure of uncertainty. Remarkably, only by using three elemental conditions
of consistency we can show that this quantity H is what we now call Shannon
entropy. The three conditions are:

(1) H has to be a continuous function of the pi’s, or else an arbitrarily small
change in their value would lead to a large change in the amount of un-
certainty.

(2) If all pi are equal, the quantity h(n) = H( 1
n · · ·

1
n ) is a monotonic increas-

ing function of n: If you don’t know anything about the distribution, your
uncertainty can only increase if the number of possible choices increases.
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(3) The measure H has to be consistent, meaning that if there is more than
one way of calculating its value they all have to give the same answer.

In the opening statement we said that x can assume any of the discrete val-
ues (x1 . . . xn), thus we can not assign pi = 0 for any xi. Unless we know what
value x is e.g., pk = 1, we have to give a finite value for all pi. But if we know
that pk = 1 then we have complete information about the distribution, and a
function describing our lack of knowledge is nonsensical.

According to condition (3), we have a choice between giving the probabilities
of the events (x1 . . . xn) directly, or partitioning them in groups. We can group
the first k of them, such that the group probability is ω1 = (p1 + · · ·+ pk), then
group the next m so that the probability is ω2 = (pk+1 + · · ·+pk+m), and so on.
The amount of uncertainty of the composite events is then H(ω1, . . . , ωN ), where
N is the total number of groups. The conditional probabilities of the events
(x1 . . . xk), given the composite event ω1 is then (p1/ω1, . . . , pk/ω1). Doing this
for all the composite events, eventually brings us to the same state of knowledge
as if all the pi’s had been given directly.

H(p1 . . . pn) = H(ω1 . . . ωr) + ω1H(p1/ω1 . . . pk/ω1) (1)

+ ω2H(pk+1/ω2 . . . pk+m/ω2) + · · · .

That is, the uncertainty given by the pi’s, is the same as the uncertainty of
composite events plus the conditional probability of each composite event. As
an example, lets say we have (p1, p2, p3) = (1/2, 1/3, 1/6) and decide to form
the two following groups; ω1 = p1 = 1/2, and ω2 = p2 + p3 = 1/2. We then get

H(
1

2
,

1

3
,

1

6
) = H

(
1

2
,

1

2

)
+

1

2
H

(
1

2

)
+

1

2
H

(
1/3

1/2
,

1/6

1/2

)
(2)

= H

(
1

2
,

1

2

)
+

1

2
H

(
2

3
,

1

3

)
Since H is continuous according to condition (1), it is sufficient to determine H
for all rational values

pi = ni/
∑
i

ni, ni = integers. (3)

We can then regard each probability pi’s as a grouping of ni equally likely
events. We can group together any number of equally likely events, to create
a composite event of arbitrary probability. Take as an example N = 9 equally
likely events, and then form the following n = 3 groups; one group of n1 = 4,
one group of n2 = 3, and one group of n3 = 2. The composition law, Eq. (1)
then becomes

h(9) = H

(
4

9
,

3

9
,

2

9

)
+

4

9
h(4) +

3

9
h(3) +

2

9
h(2), (4)

where h(n) is shorthand for

h(n) = H

(
1

n
, . . . ,

1

n

)
. (5)

2



The general form of Eq. (1) with this notation becomes

h(

n∑
i

ni) = H(pi, . . . , pn) +
∑
i

pih(ni). (6)

If we now choose all ni = m, the equation further simplifies to

h(mn) = h(m) + h(n), (7)

which can be shown [1] to have the unique solution

h(n) = K log(n), (8)

where K is an arbitrary constant. Combining this with Eq. (6) we get

H(p1, · · · , pn) = K ln
(∑

ni

)
−K

∑
i

pi ln(ni)

= K ln
(∑

ni

)
−K

∑
i

pi ln

(
pi

n∑
i

ni

)

= K ln
(∑

ni

)
−K

∑
i

pi ln pi −K
∑
i

pi ln

(∑
i

ni

)
= −K

∑
i

pi ln pi, (9)

which is the familiar form of the Shannon entropy, and this is only equation that
satisfies the conditions we imposed. It then follows that for a given a probabil-
ity distribution (p1, · · · , pn), the values of the pi’s that maximizes the Shannon
entropy is the least biased and most ”honest” description of a system, subject
to the constraints imposed by our available information.

We can find the maximum of H, given that the probability is normalized,
by using the method of Lagrange multipliers.

∇ [H(p1 . . . pn)− λG(p1 . . . pn)] = 0 (10)

⇓
max {H(p1 . . . pn) | G(p1 . . . pn) = 0} ,

where G(p1 . . . pn) =
∑
i pi−1. Performing the calculation of the gradient along

one dimension pk, we obtain

− ln pk − 1− λ = 0 (11)

pk = e−(1+λ) (12)

which has to apply for all pk. Putting this into the normalization constraint
gives us

N∑
i

e−(1+λ) = Ne−(1+λ) = 1 → λ = ln(N)− 1, (13)

with the final result

pk = e−(1+lnN−1) = e− lnN =
1

N
. (14)
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The implication is that pi = 1
N is the least biased probability distribution for

the points (p1 . . . pn), and it indicates that we don’t know anything about the
distribution other than how many possible outcomes there are.

1.2 Thermodynamic and logical reversibility

Consider a general system where the total phase space is Γ, and the phase space
coordinates are described by the vectors γ ∈ Γ. The system is surrounded by
a heat bath at inverse temperature β = 1/kBT . A transformation that maps
some initial phase space distribution { γi } ≡ Γi ⊂ Γ to some final distribution
{ γf } ≡ Γf ⊂ Γ, is then due to some physical process. The Shannon entropy of
the initial and final state is given by

Si = −
∫
γ∈Γi

dγ p(γ) ln p(γ) and Sf = −
∫
γ∈Γf

dγ p(γ) ln p(γ), (15)

where p(γ) is the probability of the state represented by the phase space point
γ. If Q is the average heat absorbed by the system under the transformation,
the total entropy production (i.e., system + environment) is then given by

∆Stot = (Sf − Si)︸ ︷︷ ︸
∆S

−βQ. (16)

According to the second law of thermodynamic, total entropy change is bounded
below at zero

∆Stot ≥ 0 → ∆S ≥ βQ. (17)

A physical process which achieves equality in this bound, is considered a thermo-
dynamically reversible process. Notice that the flow of entropy between system
and bath is possible for reversible processes, if the amount of heat absorbed by
the system is equal to its entropy change. This is because the absorption of
heat by the system results in a decrease in the environment entropy according
to ∆Senv = −Qβ.

If the phase space points of our system is distributed according to the canon-
ical distribution, the probabilities p(γ) is given by

p(γ) = eβ
(
F−E(γ)

)
, (18)

where E(γ) is the energy associated with the phase space point γ, and F =
− lnZ is the free energy associated with the distribution of phase space points
{ γ }. With this probability the entropy of the initial and final state becomes

S(i/f) = β
(
U(i/f) − F(i/f)

)
, (19)

where U(i/f) = 〈E(i/f)〉C is the canonical ensemble average of the energy. Using
the first law of thermodynamics, ∆U = ∆W + ∆Q, where W is the average
work performed on the system, we find that the second law of thermodynamic
in this form becomes

∆Stot = β (W −∆F ) ≥ 0 → W ≥ ∆F, (20)
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where ∆F = Ff − Fi. We see that if the input work we perform on the system
is equal to its change in its free energy, the process is reversible.

Phase space trajectories can not cross each other, because if they could the
phase space point at the intersection does not have a deterministic Hamiltonian
evolution. The point could evolve according to either trajectory, so we would lose
information about its past. This concept is closely related to logical reversibility.
Consider a set of logical input states I, and logical output states O. Lets for
simplicity consider one single bit of information, that can be in one of two logical
states { 0, 1 }. A logical process, or a computation C, can then be described as
a transformation between the input state and the output state C : I → O.
An example of an irreversible process is then the ERASE operation, which is
defined by

ERASE : 0→ 0, 1→ 0. (21)

No matter which state you were in (0 or 1), you end up in the same state (0),
and lose any information about the past. An example of a reversible process is
the NOT operation, which is defined as

NOT : 0→ 1, 1→ 0. (22)

In this case, given the output, you always know the input. A logically reversible
process can be defined as one that, for any output logical state, a unique input
logical state exists [3]. Meaning that for every logical state in O, there exists a
reversal of C, which is defined as C−1 : O → I.

Now let the input and output states be two probability distributions instead
of a single bit. We defined them as PO(no) for no ∈ O and PI(ni) for ni ∈ I,
with normalized probabilities. After the operation C, the distribution on O is
given by

P0(no) =
∑

ni: C(ni)=no

PI(ni), (23)

where the sum is taken over all ni which satisfies C(ni) = no. If the process is
reversible, then there is one unique ni for each no, giving us

P0(no) = PI(C
−1(no)). (24)

The input and output logical entropies are given by

HI = −
∑
ni∈I

PI(ni) lnPI(ni), (25)

and
HO = −

∑
no∈O

PO(no) lnPO(no). (26)

For reversible operations, defined by Eq. (24), we see that the logical entropy
does not change

HO = −
∑

no∈C(O)

PI(C
−1(no)) lnPI(C

−1(no))

= −
∑
ni∈I

PI(ni) lnPI(ni) = HI . (27)
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In the general case, including non-reversible operation, the entropy difference
becomes

HO −HI =
∑
no

PO(n0)
∑

ni: C(ni)=no

PI(ni)

PO(no)
ln
PI(ni)

PO(no)
(28)

2 Erasing information: Landauer’s principle

As discussed in the introduction, Landauer’s solution to the apparent violation
of the second law of thermodynamics by the Szilard engine was the fact that
one has to erase the information obtained by the measurement [4, 5, 6]. All
physical systems designed to perform logical operations have specific physical
states (microstates) which correspond to the logical states. A one-bit memory
can be modeled as a single-particle-box with a barrier in the center, as shown
in Fig. 1(a). The two logical states are a particle found on the left side of the
barrier (0) or a particle found on the right side of the barrier (1). In this model
the logical states { 0, 1 } correspond to the physical states

0 ≡ {x ∈ [−L/2, 0], |p| =
√

2mE } , (29)

and
1 ≡ {x ∈ [0, L/2], |p| =

√
2mE } . (30)

Landauer argued that logically irreversible processes, which reduce the logical
state space, must therefore also compress the physical state space. This com-
pression of phase space results in an increase in entropy, in the form of heat
dissipation [7, 8]. An example of a logical irreversible process is the ERASE
operation discussed earlier (0 → 0, 1 → 0). The physical implementation of
this protocol on the SPB memory is shown in Fig. 1(b). The memory is ini-
tially in either of the two logical states { 0, 1 }. We then remove the barrier
from the center of the box, and insert it in the far right-hand side of the box.
While the barrier back towards the center, the collisions between the particle
and the barrier exerts an effective pressure on the barrier. Therefore an amount
of work is required to push the barrier, which is transferred to the heat bath via
the thermal contact between the particle and environment. When the barrier
reaches the center of the box, the particle is always found in a physical state
corresponding to the logical state 0.

Before the erasure, the probability of 0 and 1 are equally 1/2, giving a logical
entropy Hi = ln 2. After the erasure has been performed, the probability of 0 is
1, so the logical entropy is Hf = 0. The difference in logical entropy is therefore
∆H = Hf − Hi = − ln 2. Since the logical entropy has to be treated on the
same level as physical entropy, we have ∆S = ∆H, and from the second law of
thermodynamics ( Eq. (17)) we obtain

− ln 2 ≥ βQ (31)

where Q is the heat dissipated into the environment. Since the internal energy
does not change during the isothermal erasure we have, according to the first
law of thermodynamics, W = −Q. Therefore the work needed to erase one bit
of information is given by

W ≥ kBT ln 2. (32)
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Figure 1: Illustration of a binary memory, modeled as a SPB of width L, and
two logical states; left side of the barrier (0) and right side of the barrier (1).
In b) we show a physical implementation of the ERASE operation.

This equation is known as Landauer’s principle. Equality is achieved if the
erasure is performed adiabatically, in such a way that the memory is always in
equilibrium with the environment while we push the barrier towards the center.
A quasi-static isothermal compression requires an amount of work given by

W =

∫ V

V/2

kBT

V ′
dV ′ = kBT ln 2, (33)

and is , therefore, an example of a physical erasure protocol that reaches equal-
ity in the Landauer bound. The Landauer principle has in recent years been
experimentally verified in a number of different systems [9, 10, 11].

In general, a logical state does not have a one-to-one mapping to a unique
physical state. Rather, a logical state is a subset of the full phase space, Γ0/1 ⊂
Γ, and corresponds to many different microstates. By definition Γ = Γ0 ∪ Γ1,
and Γ0 ∩ Γ1 ≡ ∅. If this was not the case, the two logical states would have
indeterminate members which could not be definitely associated with either
state. In the previous case the logical state 0 is associated with the subspace
Γ0 : {x ∈ [−L/2, 0] }, while the logical state 1 is given by Γ1 : {x ∈ [0, L/2] }.
Ignoring the irrelevant y-coordinate and momentum ~p = px~x + py~y, we denote
the probability distribution of the total phase space by P (x). The probability
distribution of the logical states, PL, is then given by

PL(i) =

∫
x∈Γi

P (x) dx, i = 0, 1. (34)

The conditional probability of the microstate x given the logical state i is there-
fore

P (x|i) = P (x)/PL(i). (35)
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The total entropy, S, is given by the integral over the total phase space

S =

∫
Γ

P (x) lnP (x) dx, (36)

while the logical entropy is given by

H = −
∑
i

PL(i) lnPL(i). (37)

Following the discussion in Section 1.1, we can group the microstates into com-
posite events, i.e. the logical states Γ0/1 in this case. The total entropy can
then be written as the entropy of the logical states, plus the conditional entropy
S(Γi|i) weighted by the logical state probabilities

S = −
∑
i

PL(i) lnPL(i)−
∑
i

PL(i)S(Γi|i), (38)

where

S(Γi|i) =

∫
x∈Γi

P (x|i) lnP (x|i) dx. (39)

We see that the total entropy can be decomposed into two terms, where one is
the logical entropy H, and the other is the average conditional entropy Sin =∑
i PL(i) S(Γi|i), which we identify as the internal physical entropy in the logical

subspaces
S = H + Sin. (40)

Using this decomposed version of the total entropy, we can calculate contribution
of each term for an ERASURE operation. For this operation the initial logical
probability distribution is PL(0) = PL(1) = 1/2, while the final one is P ′L(0) = 1
and P ′L(1) = 0, which gives us a change in logical entropy ∆H = − ln 2. The
change in internal entropy is

∆Sin = −
∑
i

P ′L(i)S′(Γi|i) +
∑
i

PL(i)S(Γi|i) (41)

= −S′(Γ0|0) +
1

2
S(Γ0|0) +

1

2
S(Γ1|1)

= −
∫
x∈Γ0

P ′(x)

P ′L(0)
ln
P ′(x)

P ′L(0)
+

1

2

∫
x∈Γ0

P (x)

PL(0)
ln

P (x)

PL(0)
+

1

2

∫
x∈Γ1

P (x)

PL(1)
ln

P (x)

PL(1)

= −
∫
x∈Γ0

dx P ′(x) lnP ′(x) +

∫
x∈Γ

dx P (x) lnP (x) +

∫
x∈Γ

dx P (x) ln(2).

If we assume the initial and final phase space probabilities are equilibrium dis-
tributions, with P (x) = 1

L and P ′(x) = 1
L/2 we obtain

∆Sin = −
∫ 0

−L/2
dx

2

L
ln

2

L
+

∫ L/2

−L/2
dx

1

L
ln

1

L
+ ln 2 (42)

= − ln
2

L
+ ln

1

L
+ ln 2 = 0

Therefore the total change in entropy when adiabatically erasing one bit of
information is

∆S = ∆H + ∆Sin = − ln 2, (43)

and the generalized Landauer principle can be expressed as

∆H + ∆Sin ≥ βQ. (44)
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3 Obtaining information: Measurement

A measurement is to make a copy of the state of a system onto a memory. For
the measurement of the state of a Szilard engine, we need a binary memory.
We consider the total phase space (system + memory) to be Γ = ΓS ∪ ΓM ,
where ΓS and ΓM is the phase space of the system and memory, respectively.
Let s ∈ S = { 0, 1 } and m ∈ M = { 0, 1 } be the logical states of the system
and memory, respectively. Their physical states is denoted by xs ∈ ΓS and
xm ∈ ΓM . The conditional probability of finding the total system in the physical
state (xs, xm) given the logical states (s,m) is then P (xs, xm|s,m), and the
probability of the physical state is given by

P (xs, xm) =
∑
s,m

P (xs, xm|s,m)P (s,m) (45)

To characterize the correlation between the memory and the system, we in-
troduce the mutual information. The mutual information quantifies how much
information we obtain about one subsystem when observing another subsystem;
If the mutual information is zero, the state of the memory and system is inde-
pendent of each other. The mutual information between the physical states are
given by

Iin(ΓS ; ΓM ) = Sin(ΓS) + Sin(ΓM )− Sin(Γ), (46)

while for the logical states we have

IH(S;M) = H(S) +H(M)−H(S ⊗M), (47)

where S⊗M is the total logical state, i.e. 00, 01, 10, 11. The mutual information
between the internal states, given the logical states s and m, are given by

Iin(ΓS ; ΓM |s,m) = Sin(ΓS |s) + Sin(ΓM |m)− Sin(Γ|s,m). (48)

Taking the average over s and m, we obtain

Iin(ΓS ; ΓM |L) = Sin(ΓS |S) + Sin(ΓM |M)− Sin(Γ|S ⊗M). (49)

In a similar way that we decomposed the total entropy into the logical entropy
and average conditional entropy in Section 2, we can decompose the total mu-
tual information into the correlation between the logical states and the average
conditional mutual information between the physical states:

Iin(ΓS ; ΓM ) = IH(S;M) + Iin(ΓS ; ΓM |S ⊗M). (50)

Taking the mutual information into account, the total change in entropy ∆Stot
after some arbitrary thermodynamic interaction between the system and the
measurement apparatus is given by

∆Stot = ∆HS + ∆HM −∆IH︸ ︷︷ ︸
logical entropy ∆H

+ ∆SSin + ∆SMin −∆Iin︸ ︷︷ ︸
internal entropy ∆Sin

− βQ︸︷︷︸
heat

, (51)

where the superscript S and M indicates the system and entropy, respectively.
Going back to the erasure process and Eq. (44), we see that if the internal
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Figure 2: Illustration of the combined phase space of a Szilard engine and a
single-particle-box memory. (a) shows the initial state where the memory is
in the standard state 0 and the system is in either the 0 or the 1 state. The
transition from (a) to (b) is an example of an error-free measurement, where
the both the system and memory is either in the logical states 00 or 11.

entropy does not change during the erasure (i.e., the initial and final phase
space distribution are equilibrium distributions), we obtain

∆HS + ∆HM −∆IH ≥ βQ. (52)

After the full cycle of measurement, expansion, and deletion of memory, the
logical states of the system and the memory is the same as the initial ones.
Therefore ∆HS = ∆HM = 0, and since the internal energy does not change we
also have Q = −∆W . Using this we obtain yet another version of Landauer’s
principle

W ≥ ∆IH/β. (53)

The work required to delete the information in a memory, is given by the mu-
tual information between the system and the memory. In the case of a perfect
measurement we have ∆IH = ln 2, which means that the minimum work we
have to pay to erase the memory is the same as the work we obtain from the
Szilard engine.

3.1 Measurement errors

Measurement errors reduce the mutual information between the system and
memory, and therefore the work required to delete the memory. However, as
we argue in paper 2, it is not possible to saturate the bound in Eq. (53) when
measurement errors are present. This is due to an irreversible entropy produc-
tion not accounted for, which we will describe briefly in the following. If the
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Figure 3: Illustration of the total phase space of a Szilard engine and a single-
particle-box memory. (a) shows the initial state where the memory is in the
standard state 0, while the system is in either 0 or 1 with probability 1/2.
A measurement error occurs in (b1)/(b2), and once the barrier is inserted so
the phase space can not flow between the quadrants, the phase space of the
incorrectly mapped states evolve chaotically according to Hamiltonian dynamics
as shown in (c). Coarse graining of the phase space after the time evolution
results in the final phase space distribution shown in (d).

system is a standard Szilard engine, and the memory is a single-particle-box as
before, there are four distinct logical states (00, 01, 10, 11). In Fig. 2 we show
a schematic of the full phase space of the (system + memory). Here we reduce
the dimension of the phase space to the only relevant degree of freedom (the
x-coordinate). Therefore the horizontal axis represents the x-coordinate of the
particle in the system, while the vertical axis represents the x-coordinate of the
particle in the memory. The total phase space is divided into four quadrants,
each of which represents one of four logical states, associated with which side
of the box the particle is in the system and memory. The initial state of the
system + memory is shown in Fig. 2(a), where the memory is in a standard
state 0, while the system is either in the state 0 or 1 with probability 1/2. If an
error-free measurement is performed on the system and copied into the memory,
the full phase space evolve into what is shown in Fig. 2(b). The internal entropy
and the logical state of the system and memory is identical; both the memory
and the system is either in state 0 or 1 with the same phase space distribution.

Consider now the schematic in Fig. 3, showing the phase space evolution of
this model when measurement errors are present. The initial state shown in
Fig. 3(a), is the same standard state as in the error-free measurement. If the
system is now put into contact with the measurement apparatus and copied into
the memory, some of the system states are incorrectly mapped to the memory.
This incorrect mappings come from the cases where the actual position of the
particle in the system does not agree with what was recorded in the memory,
and is shown in Fig. 3(b), i.e., the phase space points in 01 are wrongly mapped
and should fill in the empty space in 00. When the barrier is inserted the
phase space points can no longer cross the boundaries between the four quad-
rants. However, the phase space continues to evolve according to deterministic
Hamiltonian dynamics, resulting in a complicated structure of the phase space
as shown in Fig. 3(c). Nevertheless, since the time evolution obeys Liouville’s
theorem, the entropy of Fig. 3(c) is still the same as in Fig. 3(b). To reach
the final state with uniform phase space distributions, shown in Fig. 3(d), we
have to coarse-grain the phase space. We therefore lose information about the
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complicated phase space structure. It is this coarse-graining that introduces an
irreversible measurement entropy given by

Sε = −ε ln ε− (1− ε) ln(1− ε), (54)

where ε is the probability of measurement error.
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