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Neural networks have been proven very successful 
for solving complex high dimensional problems

Quantum mechanics is all about manipulating 
vectors in a high dimensional space, with added 

exotic effects

Can we combine them?



Neural networks

Neural networks is the core of the recent AI boom

If you want the NN to preform some task, it needs 
relevant data to learn from



Self driving cars

Data: interaction with simulated environment



Protein folding

Data: folded structure of known proteins



Generate new faces?

Data: pictures of celebrity faces



Generate new faces?

Data: pictures of celebrity faces



Huge range of 
other applications

But lets start from scratch 
and describe the smallest 
unit of the neural network
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The output from the first neuron 
is the input to the second neuron



f(z) =
1

1 + e−z

f(z) = tanh(z)

f(z) = {
0 if z < 1

z if z ≥ 1

A non-linear function can be 
used as activation function 



y = f(z2)

= f(ω2 f(z1) + b2)

= f(ω2(ω1x + b1) + b2)

f(x) = x

= ω2ω1x + ω2b1 + b2

Why non-linear activation?
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G : x → y

A single finite layer can approximate 
any continuous function

F(x, θ)
F(x, θ) ≃ G(x)

x y



Input 
layer

Hidden 
layers

Output 
layer

Deep Neural Network



Deep Neural Network

Can be used as function approximators 
for very abstract functions.

For example functions that predicts 
whether data comes from measurement 

on a cat or a dog.



Tail length 
(cm)

Height 
(cm)

Weight 
(kg)

Fur length 
(cm)

Dog 1 30 60 15 5

Cat 1 15 20 5 3

Cat 2 20 30 6 8

Dog 1 5 80 40 6

...



Cat

Dog

Tail 
length

Height

Fur length 

Weight
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Classification example 
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Dog
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Height

Fur length 

Weight

20
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Classification example 



Cat

Dog1

0

32 × 32 → 1024 input neurons

Classification example 
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0.7

⃗aL = [0.3
0.7] ⃗y target = [0

1]
0

1

C(θ) = ∑
x

∥ ⃗a L(x) − ⃗y target(x)∥2

Some measure of error

θn+1 = θn − η
∂C
∂θ

Gradient descent

Predicted True

∂C(θ)
∂θ

= 0

Minimized when

Have to tweak  based on data, so that the network can 
make accurate predictions 
θ

Cost function summing 
over all data points x



Neural network summary

Powerful universal function approximators

Have efficient weight updating methods (back-
propagation)

Non-linear activation of nested functions 
gives deep representative power

How good the function approximation is depends 
on how much data you have to train on



Quantum Computing 
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Quantum bit: qubit

|0⟩ = [1
0]

|1⟩ = [0
1] |ψ⟩ ∈ ℂ2

State of system given by

|ψ⟩ = α |0⟩ + β |1⟩

|α |2 + |β |2 = 1

|ψ⟩ = cos ( θ
2 ) |0⟩ + eiϕ sin ( θ

2 ) |1⟩

Linear combination is not 0 and 1



|ψ⟩ = cos ( θ
2 ) |0⟩ + eiϕ sin ( θ

2 ) |1⟩



Classical computers are based on manipulating bits of 
information, i.e. 0 and 1

The manipulation is called “logical gates”



NOT : 0 → 1 1 → 0

Single bit classical gate

ERASE : 0 → 0 1 → 0



There are also quantum mechanical equivalent 
operations, called quantum gates

These are the basic operations we 
can use in a quantum computer



σx = [0 1
1 0]

NOT : 0 → 1 1 → 0

|0⟩ σx |1⟩

|1⟩ σx |0⟩

σxα |0⟩ + β |1⟩ β |0⟩ + α |1⟩



Hadamard gate

H =
1

2
(σx + σz) =

1

2 [1 1
1 −1]

H|0⟩ |0⟩ + |1⟩

2

H|1⟩ |0⟩ − |1⟩

2



General rotation on 
Bloch sphere

R ̂n(θ) = cos(θ/2)I − i sin(θ/2)(nxσx + nyσy + nzσz)
U = eiαR ̂n(θ)



What about classical 
gates for two bits?



Classical CNOT

00 → 00
01 → 01
10 → 11
11 → 10

Flip target bit if control bit is 1

ct c ̂t



What about operation 
on two qubits?



|00⟩ = |0⟩ ⊗ |0⟩ =

1
0
0
0

|01⟩ = |0⟩ ⊗ |1⟩ =

0
1
0
0

|10⟩ = |1⟩ ⊗ |0⟩ =

0
0
1
0

|11⟩ = |1⟩ ⊗ |1⟩ =

0
0
0
1

Tensor product states

|ψ⟩ = α |00⟩ + β |01⟩ + γ |10⟩ + δ |11⟩



Quantum CNOT

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|00⟩ =

1
0
0
0

|01⟩ =

0
1
0
0

|10⟩ =

0
0
1
0

|11⟩ =

0
0
0
1

|0⟩ |1⟩

|1⟩|1⟩



Generate entanglement 

|0⟩ |0⟩

|0⟩

H =
1

2 [1 1
1 −1]

|0⟩ + |1⟩

2
H

( |0⟩ + |1⟩

2 ) |0⟩ =
|00⟩ + |10⟩

2
|00⟩ →



Generate entanglement 

|0⟩

|0⟩ H

|00⟩ + |10⟩

2
→

|00⟩ + |11⟩

2

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|00⟩ →

} |00⟩ + |11⟩

2



|0⟩ = [1
0]

|11⟩ =

0
0
0
1

|ψ⟩ ∈ ℂ2

|ψ1ψ2⟩ ∈ ℂ4

|ψ1ψ2…ψn⟩ ∈ ℂ2n
|01101001…⟩

N qubits lives in 2N



⃗v = [0.54
0.83]

Classical data Quantum data

|ψ⟩ = 0.54 |0⟩ + 0.83 |1⟩

+0.31 |10⟩ + 0.66 |11⟩
|ψϕ⟩ = 0.54 |00⟩ + 0.44 |01⟩⃗v =

0.54
0.44
0.31
0.63



|q1q2…qn⟩ =
2n

∑
i=1

vi | i⟩

n qubits can store 2n numbers

2n numbers can be compressed into n qubits

⃗v =

v1
v2
⋮

v2n

∈ ℝ2n



Classical Quantum

FFT

Eigenvalues 
Eigenvectors

Matrix inversion

O(n log2 n)

O(n3)

O(n log2 n)

O (log2(n)2)

O (log2(n)2)

O (log2(n)3)

O(n) : how the number of operations in an 
algorithm scales with the input 

n = number of 
classical data points



Classical Quantum

FFT

Eigenvalues 
Eigenvectors

Matrix inversion

1010

1027

1010

900

900

26000

n = 109 → 301 GB classical data qubits



Three big caveats

1. Encoding classical information into qubits also 
have computational cost. 

2. Measurement collapses wave function: if final state 
is superposition we need quantum tomography. 

3. Environmental noise destroys quantum effects.

|0⟩ U α |0⟩ + β |1⟩



Quantum computing summary

1. Quantum computers can take advantage of 
dimensional compression of classical data 

2. As well as quantum effects like superposition 
and entanglement 

3. Able to perform some computations exponentially 
faster than classical counterpart 

4. Importing and exporting classical data is non-
trivial 

5. Experimentally difficult to build due to 
sensitivity to environment



Built by commercial companies: IBM, Google, Intel, etc.

Shor’s algorithm: prime number factorization 

Grovers’s algorithm: search unstructured database

Quantum computers could break many of modern 
classical encryption methods



Quantum Networks



U1
1

U1
2

|q1⟩

|q2⟩

|q3⟩

|q4⟩

Naive quantum network

|qt⟩U1
3

U1
4

U1
5

No cloning: cannot make a copy of a quantum state



QNN requirements

Schuld, Maria, et al. "The quest for a quantum neural network." Quantum Information Processing 13.11 (2014): 2567-2586.

1. Produces outputs that is closest to the target by 
some distance measure (i.e. minimized some cost 

function) 

2. The QNN reflect one or more basic neural computing 
mechanisms 

3. Must be based on quantum effects: superposition, 
entanglement and/or interference



|q3⟩

|q2⟩

|qn⟩

|q1⟩

⋮

…

…

…

⋮

|a⟩

…

…

U1(θ1)

UL(θL)

U3(θ3)

U2(θ2)

U4(θ4)

UL−1(θL−1)

Tune parameters  such that 
measurement outcome is the desired one

θ = {θ1, θ2, …, θL}

qubits and one “special” qubitn |a⟩



Key power of neural networks comes from 
non-linear activation functions

All operators in quantum mechanics are linear 
except measurement



Focus on one particular 
implementation using 

measurement as activation



ω2

i1
ω1

i3
ω3

i2
∑

n

inωn z

1

0

ω4

i4

y = 0 ∨ 1

b = 0

⃗i =

i1
i2
i3
i4

⃗ω =

ω1
ω2
ω3
ω4

Input vector Weight vector

4 inputs example



We will now implement a quantum 
equivalent to this classical neuron



⃗i =

i1
i2
i3
i4

⃗ω =

ω1
ω2
ω3
ω4

Input vector Weight vector

McCulloch-Pitts neuron: in, ωn ∈ {−1,1}

|ψi⟩ =
1

4
(i1 |00⟩ + i2 |01⟩ + i3 |10⟩ + i4 |11⟩)

|ψω⟩ =
1

4
(ω1 |00⟩ + ω2 |01⟩ + ω3 |10⟩ + ω4 |11⟩)

|ψi⟩ =
1

4

4

∑
n=1

in |n⟩ |ψω⟩ =
1

4

4

∑
n=1

ωn |n⟩

|n⟩ ∈ { |00⟩, |01⟩, |10⟩, |11⟩}

4⟨ψω |ψi⟩ = ⃗i ⋅ ⃗ω}



|0⟩

|0⟩

|0⟩

UωUi{Encoding

Ancilla

Tacchino, F, et al. "An artificial neuron implemented on an actual quantum processor." npj Quantum Information 5.1 (2019): 26.

|00⟩ =

1
0
0
0

|ψi⟩ =
1

4

4

∑
n=1

in |n⟩ |ψω⟩ =
1

4

4

∑
n=1

ωn |n⟩

Ui =

i1 … … …
i2 … … …
i3 … … …
i4 … … …

Any unitary of the form prepares input vectorUi

Ui |00⟩ = |ψi⟩



|0⟩

|0⟩

|0⟩

UωUi{Encoding

Ancilla

Tacchino, F, et al. "An artificial neuron implemented on an actual quantum processor." npj Quantum Information 5.1 (2019): 26.

Any unitary of the form prepares input vectorUi

|ψi⟩ =
1

4

4

∑
n=1

in |n⟩ |ψω⟩ =
1

4

4

∑
n=1

ωn |n⟩

Uω = [
… … … …… … … …… … … …
ω1 ω2 ω3 ω4] projects weight vectorUω

Ui |00⟩ = |ψi⟩

Uω |ψω⟩ = |11⟩



|0⟩

|0⟩

|0⟩

UωUi{Encoding

Ancilla

Tacchino, F, et al. "An artificial neuron implemented on an actual quantum processor." npj Quantum Information 5.1 (2019): 26.

|ψi⟩ =
1

4

4

∑
n=1

in |n⟩
Uω |ψi⟩ ≡ |ϕi,ω⟩ =

4

∑
n=1

cn |n⟩

Some new wave function

Ui |00⟩ = |ψi⟩ Uω |ψω⟩ = |11⟩

Prepared input

|ϕi,ω⟩ = c1 |00⟩ + c2 |01⟩ + c3 |10⟩ + c4 |11⟩

⃗i ⋅ ⃗ω
4

= ⟨ψω |ψi⟩ = ⟨ψω |U†
ωUω |ψi⟩ = ⟨11 |ϕi,ω⟩ = c4

Inner product of input and weight vector has been encoded in c4



|0⟩

|0⟩

|0⟩

UωUi{Encoding

Ancilla

Tacchino, F, et al. "An artificial neuron implemented on an actual quantum processor." npj Quantum Information 5.1 (2019): 26.

|ψi⟩ =
1

4

4

∑
n=1

in |n⟩
Uω |ψi⟩ ≡ |ϕi,ω⟩ =

4

∑
n=1

cn |n⟩

Some new wave function

Ui |00⟩ = |ψi⟩ Uω |ψω⟩ = |11⟩

|ϕi,ω⟩ |0⟩ = c1 |000⟩ + c2 |010⟩ + c3 |100⟩ + c4 |110⟩

|out⟩ = c1 |000⟩ + c2 |010⟩ + c3 |100⟩ + c4 |111⟩

CNOT ↓

Prepared input



|0⟩

|0⟩

|0⟩

UωUi{Encoding

Ancilla

Tacchino, F, et al. "An artificial neuron implemented on an actual quantum processor." npj Quantum Information 5.1 (2019): 26.

Ui |00⟩ = |ψi⟩ Uω |ψω⟩ = |11⟩

|out⟩ = c1 |000⟩ + c2 |010⟩ + c3 |100⟩ + c4 |111⟩

⃗i ⋅ ⃗ω = 4⟨ψω |ψi⟩ = 4c4

Probability to measure ancilla in state 1 
(activated neuron) is proportional to the 

weighted sum of input 

Pact = |c4 |2 =
|∑4

n inωn |2

42

Classical neuron is activated if the 
weighted sum of input is larger than 

some bias.

If  the probability of activation is 1⃗i ∥ ⃗ω

⃗i = ⃗ω ⃗i = − ⃗ω



Tacchino, F, et al. "An artificial neuron implemented on an actual quantum processor." npj Quantum Information 5.1 (2019): 26.

Pattern recognition 

 

 different possible 
vectors

⃗i =

±1
±1
±1
±1

⃗ω =

±1
±1
±1
±1

42 = 16



|0⟩

⋮ ⋮

|0⟩

|0⟩

|0⟩

|0⟩

Ui Uω

Tacchino, F, et al. "An artificial neuron implemented on an actual quantum processor." npj Quantum Information 5.1 (2019): 26.



|0⟩

|0⟩

|0⟩

UωUi

|0⟩

|0⟩

|0⟩

UωUi

|0⟩

|0⟩

|0⟩

UωUi

|0⟩

|0⟩

|0⟩

UωUi

|0⟩

|0⟩

|0⟩

UωUi

|0⟩

|0⟩

|0⟩

UωUi

|0⟩

|0⟩

|0⟩

UωUi

|0⟩

|0⟩

|0⟩

UωUi

Every measurement destroys quantum effects 
 classical propagation of probabilities→

So this essentially becomes a classical network 
 no quantum benefits→



Distribute quantum states 
using “fan-out” operator

Another QNN
Implemented on simulator 

Classically updates operators by 
using gradient decent 

∂C
∂θ

This gradient is very difficult to 
experimentally access

And  grows polynomially with number 
of qubits 

θ



“Based on our numerics we cannot make a case for any quantum advantage 
over classical competitors for supervised learning.”

Farhi, Edward, et al. "Classification with quantum neural networks on near term processors." arXiv preprint arXiv:1802.06002 (2018).

“A key type of quantum supremacy is that the quantum network can take 
and process quantum inputs: it can for example process  and  

differently.”
| + ⟩ | − ⟩

Wan, Kwok Ho, et al. "Quantum generalisation of feedforward neural networks." npj Quantum Information 3.1 (2017): 36. 

“As a conclusion, QNN research has not found a coherent approach yet 
and none of the competing ideas can fully claim to be a QNN model 

according to the requirements set here.”
Schuld, Maria, et al. "The quest for a quantum neural network." Quantum Information Processing 13.11 (2014): 2567-2586.



Conclusion and outlook

Neural networks and quantum computers are individually 
powerful concepts 

No clear and natural reason to merge the two

Fundamental difference between non-linear NN and linear 
quantum mechanics difficult to reconcile 

More work required to find eventual benefit:  
very young field


