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1 Foundations of statistical mechanics

In classical mechanics, the time-evolution of a system is described by Hamil-
tonian dynamics. If we want to describe the behavior of systems with a large
number of degrees of freedom, such as an N-particle gas, it is convenient to
consider its phase space. The phase space is an imagined space, where each de-
gree of freedom has its own axis. Thus, the phase space of a three-dimensional
N-particle gas has 3N axes to specify the coordinates of each particle (z,y, 2),
and 3N axes to specify the momentum of each particle (pg,py,p-). A specific
point in the 6N-dimensional phase space corresponds to one unique microstate.
Under Hamiltonian dynamics, this point moves around in the phase space, as
the state of the system changes.

There are not many systems where we have access to the exact microstate. If
you are given a container of gas, it would be impossible for you to determine the
exact position and momentum of every particle in it. Thus, in the macroscopic
world, we deal with macroscopic variables. In general, a macrostate of a system
is defined by the properties which we can reliably measure. For a simple ideal
gas, this is its temperature 7', volume V' and pressure p. For magnetic systems,
we would include the magnetization M, and for liquids, the surface tension ~.
All microstates that correspond to a given macrostate, constitutes a volume in
phase space. Within this volume, we can assign a probability distribution to the
points in the phase space. The exact distribution we assign depends on what
information we have about the system, but the goal is that this probability
distribution gives us the probability for the system to be in the corresponding
microstate.

If we consider again the N-dimensional gas, a specific point in phase space
is specified by 6N independent variables; the N three-dimensional momentum
vectors py = (p1,-..,pn), and the N three-dimensional coordinate vectors gy =
(q1,-..,qn). If the state-vector 2 = (pn;gn) is known at one time, it is known
for all times, due to deterministic Hamiltonian evolution. Given the Hamiltonian
Hy = H(xzpn,t), we can find the time evolution of the system using Hamilton’s
equations,
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The state-vector xpy traces out a trajectory in phase space, as it evolves in
time. Since Hamiltonian dynamics defines a unique past and future for a given




state xp, it follows that the trajectory can not cross itself. If it could, then
Hamiltonian evolution would be indeterministic. If we lack complete knowledge
of the system, we have to consider xy to be a stochastic variable, and associate
a probability density, p(zn,t) to the phase space. The probability that the
state is found in a volume element dxy around xy at time ¢, is then given by
p(xn,t)dry. Since the state must always lie somewhere in the phase space, the
probability density has to be properly normalized:
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where fF indicates integration over the full phase space. The probability to find
the system in a region R is then given by

Pzy € R) = /Rp(xN,t)de. (3)

We can view this probability density in phase space as an incompressible fluid,
that flows according to Hamiltonian dynamics. Therefore we can use fluid me-
chanics to find its equation of motion; the Liouville equation.

p BB Xelou1)

Figure 1: Representation of a 2Nd dimensional phase space, p(xy,t), where d
is the spacial dimension of the system and N is the number of particles. The
total phase space we consider is given by I', while a small volume element of
that is V. The differential area-element normal to the surface of V is given by
ds.

Consider a small volume element V' with surface area S,at a fixed point in

phase space, as shown in Fig. 1. The total probability is conserved, so any
change in the probability to find the state in this volume,
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is also given by the flow of probability through it,
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Here @y is the velocity of the state-vector, and dS is the area-element normal to
the surface S. We can now use Gauss’s theorem, which transforms the surface
integral to a volume integral, to obtain
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where Vi, = (041, --Ogn»Opys---,0py) is the gradient with respect to all the
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phase space variables. Since the volume area V' is independent of time, we can

take the time-derivative inside the integral on the left side. The arguments of
the integral therefore have to be the same, giving us
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We can calculate the divergence term to get
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and if we now use Hamilton’s equations (Eq. 1), we see that
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From Eq. (7) we therefore get
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Since the total time derivative is defined as
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we see that if we pick a specific point in phase space x, and follow its trajectory
as the phase space evolves it time, the probability density in the neighborhood
of that point remains constant:

%p(a:N,t) = 0. (11)

We can further rewrite Eq. (9) into a more familiar form by using Hamilton’s
equation.
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This equation is known as Liouville’s equation, and it is often written using the
Poisson bracket notation:

& plan,t) = — {ple, 1), Hy} . (13)
It is the equation of motion for the probability density in phase space, and from
it we can solve any dynamical Hamiltonian system, given that we know the
initial probability density p(zx,0). A probability density that does not depend
on time, dp(zy,t) = 0, is associated with a system at equilibrium. The
condition that makes both Liouville’s equation and the stationary probability
density compatible is clearly

{p(zn,t),HN} =0. (14)

Once choice of p(zy,t) that satisfies this equation is one that does not depend

time

Figure 2: Illustration of the Hamiltonian flow of a phase space density according
to Liouville’s theorem.

on zy. In other words
p(xn,t) = const. (15)

In general, the Hamiltonian flow of the phase space density makes an initially
smooth phase space density quickly evolve into an extremely complicated struc-
ture, with tendrils going in all directions in phase space. An illustration of this
is shown in Fig. 2, where an initially spherical phase space density evolves into
a complicated structure. However, no matter how complicated the structure
becomes, its total volume remains the same.

2 Ensemble theory

Ensemble theory is the foundation that all of statistical mechanics is built upon.
The probability density p(xy,t) can be interpreted as an ensemble of microstates
belonging to the same macrostate. If we imagine we have M identical copies
of a three-dimensional ideal gas (6N dimensional phase space), each member of



the ensemble is a vector pointing to a point in the phase space. The density of
these representative points in phase space is then given by Mp(zy,t).

The ensemble average of a function f(zy) is defined as
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where the integration extends over the full phase space I'. In general f can be

an explicit function of time f = f(xy,t), which makes the ensemble average
time-dependent as well. The ensemble is stationary if
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and for such an ensemble the average value of any function f will be time inde-
pendent. Stationary ensembles correspond to equilibrium distributions, and the
condition that ensures that a system is both in equilibrium and obeys Hamilto-
nian dynamics can be found by combining Eq. (17) and Eq. (13) to obtain
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A final thing we need in order to define the different ensembles, is the concept
of ergodicity. We can define the time average of a function f(xy) as
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The ergodic hypothesis states that for a given equilibrium macro state, the time
spent by the system in some region of phase space is proportional to the vol-
ume of the region. This implies that all corresponding micro states are equally
probable of a long period of time, which makes the ensemble average equal to
the time average
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The exact time scale where the ergodic hypothesis becomes valid depends on the
macroscopic system in question. For some system the time it takes to explore
the full phase space can be so large that the equilibrium state exhibit ergodicity
breaking. We also see that the probability to find a macro state in some specific
region of phase space, is proportional to the area of the region.

2.1 The microcanonical ensemble

The simplest ergodic stationary state, is given by a Hamiltonian of constant
energy H(zy) = E. This equation defines a hypersurface in the phase space.
For a gas with 6N dimensional phase space, the energy hypersurface spans
6N-1 dimension. From theorem Eq. (14), we see that the probability density
compatible with this Hamiltonian is one that is constant everywhere on the
hypersurface. And from the ergodic theorem, we know that the probability to
find the system in a region R in phase space, is proportional to the area of that
region, which we can normalize using the total area of the hypersurface
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Here Q(R) is the area of the region R, while Q(FE) is the area of the full energy
hypersurface. We can then write down the normalized probability distribution
of the energy surface as
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This probability distribution constitutes the microcanonical ensemble, and rep-
resents a closed system with constant energy, where we equal a priori probabil-
ities for the possible micro states.

2.2 The canonical ensemble

Most thermodynamic systems do not have an exactly fixed energy. Even a
closed system at equilibrium will exchange heat with its environment, in such a
way that the energy of the system fluctuates around a mean value. To find the
equilibrium distribution of such and ensemble we maximize the Gibbs entropy,

S = —kB/de plzn) logp(zn). (23)

This is identical to the Shannon entropy (derived in chapter ??), with K = kp.
Since the maximization is constrained by the normalized probability and the
average energy,

/dep(xN) =1, / denp(en)Hy = (E), (24)
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we use the method of Lagrange multipliers to obtain
Al—kB—F/\gHN—k‘Blogp(J;N) =0, (25)
where Aj /9 are the Lagrange multipliers. This gives us
A A
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To determine the Lagrange multipliers we first use the normalized probability

condition and obtain
A A
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Next, we take Eq. (25), multiply it by p(xx) and integrate over I'. This leaves
us with
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Comparing this equation to the definition of the Helmholtz free energy F'— U +
TS = 0, we see that Ay = —1/T = —/. Putting it all back into Eq. (26) we
finally obtain the probability density for the canonical ensemble;
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The function Zr is the canonical partition function, and can be considered a
normalization constant for the probability density p(xy).



2.3 The grand canonical ensemble

The grand canonical ensemble is derived in an almost identical way as above,
only now we maximize the entropy with an additional constraint, on the average
number of particles [ Np(zy) dzy = (N). The probability density in the grand
canonical ensemble becomes
e~ BHN—pN)
TN) = ,
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(30)

where p is the chemical potential.



