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Cooling by heating: Restoration of the third law of thermodynamics
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We have made a simple and natural modification of a recent quantum refrigerator model presented by Cleuren
et al. [Phys. Rev. Lett. 108, 120603 (2012)]. The original model consist of two metal leads acting as heat baths
and a set of quantum dots that allow for electron transport between the baths. It was shown to violate the dynamic
third law of thermodynamics (the unattainability principle, which states that cooling to absolute zero in finite time
is impossible). By taking into consideration the finite energy level spacing �, in metals we restore the third law
while keeping all of the original model’s thermodynamic properties intact down to the limit of kBT ∼ �, where
the cooling rate is quenched. The spacing � depends on the confinement of the electrons in the lead and therefore,
according to our result larger samples (with smaller level spacing), could be cooled efficiently to lower absolute
temperatures than smaller ones. However, a large lead makes the assumption of instant equilibration of electrons
implausible; in reality one would only cool a small part of the sample and we would have a nonequilibrium
situation. This property is expected to be model independent and raises the question whether we can find an
optimal size for the lead that is to be cooled.

DOI: 10.1103/PhysRevE.93.032102

I. INTRODUCTION

Quantum refrigerators are solid-state devices with huge
potential benefits in technology. With no moving parts and of
microscopic size, they could easily be integrated into existing
technology, such as cellphones and computers, to enhance
their performance by utilizing the waste heat energy they
produce. As always, the technological frontier is supported by
a backbone of theoretical framework, which in recent years has
seen many advancements (see, e.g., [1–6]). In addition to the
technological possibilities they present, quantum refrigerators
are excellent tools for providing insight into the unique
features of open quantum systems. For a review of stochastic
thermodynamics and the formalism used to treat quantum
refrigerators see, e.g., [7,8].

The quantum absorption refrigerator is a version of these
general machines, based on producing a steady-state heat
flow from a cold to a hot reservoir, driven by absorption
from an external heat reservoir. A key tool to understand the
operation of these refrigerators, when approaching the limiting
temperature of absolute zero, is the laws of thermodynamics.
In this article we study one such device that appears to violate
the dynamic version of the third law of thermodynamics (the
unattainability principle), which states that one cannot cool a
system to absolute zero in a finite amount of time. A recent
publication by Cleuren et al. [9] presented a novel model
based on two electronic baths coupled together via a system
of quantum dots and driven by an external photon source.
The article generated some controversy due to its apparent
violation of the unattainability principle, and several authors
[10–13] proposed explanations for this violation. However, we
find that the discussion was without conclusion, and we will
discuss this later in the article.

We will begin by giving a brief presentation of the quantum
refrigerator model, as introduced by Cleuren et al. [9], and
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its thermodynamic properties. Then we will summarize and
comment on the discussion that followed. Finally, we will
present a simple modification, based only on the fact that the
energy levels of metals are discrete when treated quantum
mechanically, which becomes important at temperatures T �
�, where � is the level spacing. (We measure temperature
in energy units, setting the Boltzmann constant kB = 1.) Our
modification upholds the third law while it simultaneously
reproduces the results from the original model down to the
limit of T ∼ �. In essence, we want to make the point that
the validity of the unattainability principle is only guaranteed
when applied to a quantum description of a system and that
the most important quantum effect to consider in relation to
this law is the discretization of energy states.

A. Model

The quantum refrigerator model proposed in [9] is shown
schematically in real space in Fig. 1 and in energy space in
Fig. 2. Here we briefly explain its operating protocol. It consists
of two metal leads and four quantum dots; the large and hot
lead with temperature TL is coupled to the small cold lead with
temperature TR , via the set of quantum dots. We assume that
each quantum dot is highly confined and is thus associated
with a single energy level, since the other levels are far outside
the energy range of the system. These four levels are marked in
Fig. 2. The quantum dots form two channels, as illustrated in
Fig. 1, where the energy levels ε2 (ε1) and ε2 + εg (ε1 − εg) are
coupled together in channel 2 (channel 1). The two channels
are spatially separated, therefore we can safely ignore any
Coulomb interaction between the electrons in channels 1 and
2. The basic idea is to move cold electrons (i.e., with energy less
than μ) from the hot lead into the cold lead via channel 1 while
simultaneously moving hot electrons (energy greater than the
chemical potential μ) from the cold lead to the hot lead via
channel 2. This transport of electrons will thus cool the right
lead by injecting cold and extracting hot electrons. Naturally
the transport will also heat up the left lead, but since we assume
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FIG. 1. Schematic of the model shown in real space. A small
piece of metal with temperature TR is coupled to a larger piece
with temperature TL > TR . Four quantum dots form two channels
for electron transport between the metals. The arrows indicate the
desired direction of the net particle current to achieve cooling of the
right metal lead. The distance between the two channels is too large
for any Coulomb interaction to take place between them.

that it is a large piece of metal with a high heat capacity, the
heat absorbed will not result in a measurable change in TL. We
can obtain the desired particle flow direction by coupling the
quantum dot system to a bosonic bath that induces transitions
between the quantum dots of each pair, i.e., between ε1 and
ε1 − εg in channel 1 and between ε2 and ε2 + εg in channel
2. The bosonic bath can be photons from an external source
and/or phonons from the device. In this discussion we will
consider it to be a photon bath with temperature TS . In Ref.
[9] the photon bath is taken to be the sun with a temperature
TS � 6000 K and we will follow this in the sense that we
will assume that it is the largest energy scale in the system.
In any case the transition rates between the quantum dots are
proportional to the probability of finding a boson with energy
equal to the energy difference between the two quantum dot
levels, which is given by the Planck distribution n(E). The

FIG. 2. A hot metal lead TL is coupled to a cold one TR via
two spatially separated pairs of quantum dots, which form two
channels for electron transport between the leads. We consider the
case where μL = μR = μ and the energy levels of the quantum dots
are symmetric about the chemical potential (ε2 − μ = μ − ε1 →
ε1 = −ε2). The schematic is adapted from [9].

rates are thus given by

k
εg

↑ = �s

eεg/TS − 1
, k

εg

↓ = �s

1 − e−εg/TS
. (1)

Here k↑ and k↓ are the rates for upward and downward
transitions in energy, respectively. The difference between
them is that k↓ contains an additional term for spontaneous
emission.

The transition rate for electron transfer from the metal to
an empty quantum dot level is proportional to the probability
of finding an electron in the same energy level in the metal,
which is given by the Fermi-Dirac distribution f (E). For the
inverse transition to take place there has to be an available
energy level in the metal, which has a probability proportional
to 1 − f (E). Thus the transition rates between the quantum
dot and metal are

kE
l→d = �

e(E−μ)/T + 1
, kE

d→l = �

e(μ−E)/T + 1
. (2)

For transitions involving the right lead the temperature T =
TR , while for the left lead T = TL. Notice that in general
� �= �s . These are the constants that set the time scale of the
transitions and depends on the specific details of the device.

As in Ref. [9], we will considering the strongly coupled case
where the energies of the quantum dots are symmetric about
the chemical potential (ε2 − μ = μ − ε1). We can therefore
choose to measure all energies relative to μ = 0 and combine
the two parameters ε2 = −ε1 = ε.

We can now introduce three distinct occupation probabil-
ities per channel. Since the two quantum dots in the same
channel are close to each other in space we assume that the
Coulomb repulsion between electrons prevents simultaneous
occupation of the right and left quantum dots. For channel 1 we
then have the probabilities P

(1)
L , P (1)

R , and P
(1)
0 , which represent

the probability of finding an electron in the left quantum dot
with energy −(ε + εg), in the left quantum dot with energy −ε,
and in neither quantum dot, respectively. A master equation
describing the time evolution of the occupation probabilities
in channel 1 can thus be formulated

Ṗ(1) = M̂ (1)P(1), P(1) ≡
⎡
⎣P

(1)
0

P
(1)
L

P
(1)
R

⎤
⎦, (3)

where the transition matrix M (1) is given by

M (1)

=

⎡
⎢⎢⎢⎢⎣

−k
−(ε+εg)
l→d − k−ε

l→d k
−(ε+εg)
d→l k−ε

d→l

k
−(ε+εg)
l→d −k

−(ε+εg)
d→l − k

εg

↑ k
εg

↓

k−ε
l→d k

εg

↑ −k−ε
d→l − k

εg

↓

⎤
⎥⎥⎥⎥⎦.

We are interested in the steady state of the system, where the
probabilities do not change as a function of time. To find this
state we set Ṗ(1) = 0 and solve Eq. (3). By doing this we obtain
the steady-state probability vector P(1)(ε,εg,TR,TL), where we
consider �, �s , and TS as constants. A similar procedure gives
us the steady-state probability vector for channel 2 as well.
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The particle current between the right dot in the lower level
and the cold lead can be written as

J (1) = P
(1)
R k−ε

d→l − P
(1)
0 k−ε

l→d (4)

and the current through the upper level is

J (2) = P
(2)
R kε

d→l − P
(2)
0 kε

l→d . (5)

The cooling power, i.e., the heat transported out of the right
lead per unit time, can now be defined as

Q̇R = (−ε − μ)(−J (1)) + (ε − μ)(−J (2)). (6)

Since the energy levels are symmetric about μ, we can set
μ = 0 and we obtain the cooling power for the refrigerator
model

Q̇R = ε(J (1) − J (2)). (7)

Optimized cooling is attained by varying ε(TR) and εg(TR) as
a function of TR (when TS and TL are kept constant). It can be
shown (see Ref. [9] for details) that the cooling power in the
limit of low TR is given by

lim
TR→0

Q̇R ∝ TR. (8)

When working at an energy scale where εg 
 TS we have
k↑ � k↓. In this situation we can get a better understanding
of the system and when cooling will occur by considering the
transitions in channel 2. There the energy levels are situated
above μ and we have

0 < f (E) < 1/2, 1/2 < 1 − f (E) < 1.

Therefore, the rate from lead to dot will always be less than
the rate from dot to lead kE

l→d < kE
d→l for a given energy

E. The requirement for cooling to take place in this situation is
that f (ε + εg,TL) < f (ε,TR), i.e., we require (ε + εg)/TL >

ε/TR . We then have

k
ε+εg

d→l > kε
d→l

k
ε+εg

l→d < kε
l→d

kE
l→d < kE

d→l

⎫⎬
⎭ ⇒ k

ε+εg

d→l > kε
d→l > kε

l→d > k
ε+εg

l→d . (9)

When k↑ � k↓ we know that the occupation probability P
(2)
L �

P
(2)
R = P and thus P

(2)
0 = 1 − 2P . Using the inequalities

shown in Eq. (9), we now consider two different states of the
system. First assume that there is an electron in the quantum
dot system; it can exit into either the left lead or the right lead,
where the currents are k

ε+εg

d→l P
(2)
L and kε

d→lP
(2)
R , respectively.

The difference is

P
(
k

ε+εg

d→l − kε
d→l

)
> 0,

which tells us that it is more likely for the electron to exit into
the left lead. Next we assume that the quantum dot system is
unoccupied; an electron can enter from the left lead or the right
lead, with currents k

ε+εg

l→d P
(2)
0 and kε

l→dP
(2)
0 , respectively. The

difference is now

(1 − 2P )
(
k

ε+εg

l→d − kε
l→d

)
< 0,

indicating that it is more likely that an electron enters from the
right lead. Above the chemical potential, electrons entering
from the right lead and exiting into the left lead correspond to
a net cooling of the right lead, which is our desired effect.

A similar analysis can be done for channel 1, where the
corresponding result of net transport from the left to the right
lead is obtained.

In summary, one obtains optimal cooling of the right lead
by varying the energy levels ε2 = −ε1 = ε as a function of TR

and their optimal position is determined by a balance between
the transport rate (higher closer to μ) and heat removed per
transition (higher far from μ), and the additional requirement
that f (ε + εg,TL) < f (ε,TR).

B. Unattainability principle

The unattainability principle states that one cannot cool a
system to absolute zero in a finite amount of time [14]. A
system with heat capacity CV = dQ/dT and cooling power
Q̇ = dQ/dt has a cooling rate given by

dT

dt
= Q̇

CV

. (10)

If we assume that CV and Q̇ scale with temperature to the
power of κ and λ, respectively, we have

dT

dt
∝ T λ−κ . (11)

For α ≡ λ − κ < 1 the unattainability principle is violated
[10] and cooling to absolute zero is possible in a finite time.
By inspecting Eq. (8) we find that λ = 1. The heat capacity of
the metal lead as TR → 0 is dominated by the electronic heat
capacity, which is proportional to the temperature CV ∝ TR

(see, e.g., Ref. [15]), and therefore κ = 1. The end result is
that ṪR ∝ T 0, in violation of the unattainability principle.

C. Comments

Levy et al. [10] were the first to point out that because the
refrigerator presented in [9] has a cooling power of Q̇ ∝ TR

and a heat capacity of CV ∝ TR in the limit of TR → 0 K, its
cooling rate is given by

dT (t)

dt
= Q̇

CV

∝ T 0
R = const. (12)

That enables cooling to absolute zero in a finite amount of
time. In the original model proposed by Cleuren et al. the
quantum dot system consisted of only two quantum dots, with
the levels ε1 (ε1 − εg) and ε2 (ε2 + εg) being two adjacent
levels within the right (left) quantum dot. Levy et al. suggest
that the violation of the third law may be due to the neglect
of internal transitions within a single dot. This suggestion
was refuted by Cleuren et al. [11], who stated that the model
could also be constructed using two pairs of spatially separated
quantum dots, as we have done here. Their own explanation
for the violation was that the quantum master equation they
utilized does not take into account coherent effects and the
broadening of the linewidth of the quantum dot energy levels
was ignored. Both of these effects becomes important in the
low-temperature limit.

Allahverdyan et al. [12] suggested that the violation occurs
since the weak-coupling master equation used by Cleuren et al.
is limited at low temperatures. They state that one can justify
taking the limit TR → 0 for such an equation only while
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simultaneously reducing the coupling between the quantum
dot system and heat reservoirs γ → 0. Concrete analysis of
the low-temperature behavior of the cooling power is not given.

Finally, Entin-Wohlman and Imry [13] considered a sim-
plified version of the original model, where only a single
channel contributes to the electron transfer. They assumed
that boson-assisted hopping is the dominant form of electronic
transport [2] (an assumption we will also make later in the
article). If we remove channel 1 from our model and only
consider channel 2, we obtain the same system as considered
in [2]. Using Fermi’s golden rule, they found that the heat
current is exponentially small for ε2 − μ � TR . They went
on to state that the violation of the third law comes from
allowing the levels ε1 and ε2 to approach the chemical potential
linearly as a function of temperature and claimed that this is
unnecessary and complicates the setup. In our opinion, the
linear temperature dependence of the energy levels ε1 and ε2

FIG. 3. The continuous states of the metal are replaced by a
discrete spectrum with a constant energy spacing �. The asymmetry
between states above and below μ is modeled by the parameter δ.
For δ = �/2 the chemical potential lies exactly in the middle of
two energy levels. The j th (ith) level below (above) μ is given by
εj = δ − j� [εi = δ + (i − 1)�].

in the quantum dots coupled to the cold lead is an essential
feature; it arises from the optimization of the cooling power
suggested in Ref. [9], but not implemented in Ref. [13].

II. DISCRETIZATION OF THE MODEL

One of the assumptions of the model proposed is that
there is a continuous spectrum of energy states in the metal
leads. Thus the electrons are transferred elastically between the
quantum dots and the metals. We will now introduce a simple
discretized modification of the original model and show that
the unattainability principle will then be restored. In our model,
we assume an even spacing between the energy levels. We also
introduce the parameter δ to quantify the asymmetry about
the chemical potential μ (see Fig. 3). If δ = �/2 the energy
levels are symmetrically distributed about μ. As long as the
quantum dot and metal energy levels do not exactly overlap,
the transitions are now inelastic and require absorption or
emission of phonons.

A. Cooling power

We can set up a master equation for the dynamics in channel
1, as in Eq. (3), but now for the discrete system. The rate
matrix is almost identical, but since we allow for phonon-
assisted transitions, the rates between the quantum dots and
the discrete levels of the right lead are given by a sum of all
possible emission and absorption transitions. We will use εn

(εm) to denote the nth (mth) level in the metal lead, above
(below) the quantum dot level ε1. We also introduce ωn =
εn − ε1 and ωm = ε1 − εm to represent the phonon frequencies
associated with transitions between these levels. For transitions
from the lead to the dot, εn and εm are the energies associated
with emission and absorption processes, respectively, while for
dot-to-lead transitions the association is opposite. The matrix
elements change from k

ε1
d→l → k

d,ε1
d→l and k

ε1
l→d → k

d,ε1
l→d , where

we use the superscript d to indicate that it is the transition rate
for the discrete model. These rates are then sums of all possible
emission and absorption processes and can be written as

k
d,ε1
d→l =

emission︷ ︸︸ ︷∑
m

k
εm

d→l +
absorption︷ ︸︸ ︷∑
n

k
εn

d→l ,

k
d,ε1
l→d =

∑
m

k
εm

l→d

︸ ︷︷ ︸
absorption

+
∑

n

k
εn

l→d

︸ ︷︷ ︸
emission

, (13)

where the emission and absorption rates are given by

k
εn

d→l = �[1 − f (εn)]n(ωn)ω2
n,

k
εm

d→l = �[1 − f (εm)][n(ωm) + 1]ω2
m,

k
εm

l→d = �f (εm)n(ωm)ω2
m,

k
εn

l→d = �f (εn)[n(ωn) + 1]ω2
n.

(14)

Here n(ω) = (eω/TR − 1)−1 is the Planck distribution, which
tells us the probability of finding a phonon with energy ω, and
f (ε) = (eε/TR + 1)−1 is the Fermi-Dirac distribution, which
tells us the probability of finding an occupied state at ε. We
assume a three-dimensional phonon density of states, thus the
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rates have to be multiplied by a ω2 term. We have absorbed all
other constants from the density of states into the � introduced
earlier.

The transitions between the left quantum dot and the hot
left lead, i.e., the rates involving −(ε + εg), remain unchanged
since we still consider this to be a large metal piece with
a quasicontinuous energy spectrum. Again, we solve the
master equation in the steady state and obtain the occupation
probability vector P(1), but now for the discrete model. With
this we can find the particle currents in the channel 1 for the
discrete model,

J
(1)
d = P

(1)
R k

d,ε1
d→l − P

(1)
0 k

d,ε1
l→d . (15)

Thus we can write the part of the cooling power associated
with channel 1 as

Q̇
(1)
R = P

(1)
R

(∑
m

k
εm

d→lεm +
∑

n

k
εn

d→lεn

)

− P
(1)
0

(∑
m

k
εm

l→dεm +
∑

n

k
εn

l→dεn

)
. (16)

An analysis similar to that shown here can be applied to
channel 2 and provide its corresponding cooling power Q̇

(2)
R .

Thus the total cooling power is written as

Q̇R = Q̇
(1)
R + Q̇

(2)
R . (17)

It should be noted that in the limit of TR → 0 only the two
levels δ and δ − � will contribute to the total cooling power
since all levels above δ will be unoccupied and all levels below
δ − � will be occupied. We can now numerically optimize
Eq. (17), with respect to the two parameters ε and εg , while
keeping TL and TS constant. Note that εm and εn are determined
from ε = −ε1 = ε2 and are not free parameters. When εg � ε,
the optimal energy of the quantum dot levels ±(εg + ε) is
independent of ε and therefore also independent of TR (the
only influence of TR on those levels come via the coupling to
the levels ±ε). This in turn makes the optimal cooling power
Q̇R approximately independent of εg . Hence the only free
parameter for optimization is ε(TR).

The plot of the optimized cooling power as a function of
TR is shown in Fig. 4. As in [9], we have to use numerics to
analyze the behavior of the optimized Q̇R . For simplicity we
set δ = �/2 and by fitting the numerical results from Eq. (17)
to the Arrhenius equation (ln Q̇ = ln A − B/T ), we find that
the optimized cooling power as TR → 0 K is given by

Q̇R ∝ e−�/2TR , TR → 0. (18)

B. Heat capacity

The heat capacity of a Fermi gas with temperature-
independent chemical potential μ can be expressed as

CV =
∫ ∞

0
dε(ε − μ)D(ε)

∂f (ε)

∂T
. (19)

Here D(ε) is the density of states (which is a constant in our
case) and f (ε) is the Fermi-Dirac distribution. When going
from the continuous to the discrete description we have to
exchange the integral with a sum and the continuous variable

FIG. 4. Graph of the optimized cooling power Q̇R as a function
of the dimensionless variable TR/�. The dashed line is the result
from the continuous model, while the solid line is the result from
the discrete model. For temperatures TR � � the discrete model
reproduces the linear cooling power of the continuous model.
However, for temperatures TR � � the cooling power changes to an
exponential form. The parameters used are � = �s = 1, TL = 20 K,
TS = 6000 K, εg = 100 K, � = 1 K, and δ = �/2.

ε with the discretized states n�,

CV =
∞∑

n=0

(
n� − μ

TR

)2
e(n�−μ)/TR

(e(n�−μ)/TR + 1)2
. (20)

This sum can easily be determined numerically, but to gain
additional insight we can consider the heat capacity for a two-
level system. As TR → 0 the levels δ and δ − � will be the
only relevant levels. We can write the grand canonical partition
function for the two-level system as

� = 1 + e−βδ + e−β(δ−�) + e−β(2δ−�) (21)

and we can find the energy via

U = 1

�

∑
i

Hie
−βHi , (22)

where Hi is the energy of the state i. From this the heat capacity
can be obtained from CV = dQ/dT = dU/dT and we find

CV = − �2A + δ2B + �δC

T 2
R(1 + e−βδ + e−β(δ−�) + e−β(2δ−�))2

,

A = eβ(�−3δ) + eβ(�−δ) + 2eβ(�−2δ),
(23)

B = eβ(�−3δ) + eβ(2�−3δ) + eβ(�−δ) + 4eβ(�−2δ) + e−βδ,

C = 2eβ(�−3δ) + 2eβ(�−δ) + 4eβ(�−2δ).

This expression is greatly simplified at δ = �/2, i.e., a
symmetric distribution of energy levels above and below μ. In
this case we obtain

CV = 2

(
�

2TR

)2
e�/2TR

(e�/2TR + 1)2
(24)

032102-5



V. B. SØRDAL, J. BERGLI, AND Y. M. GALPERIN PHYSICAL REVIEW E 93, 032102 (2016)

and with this result, we find that in the limit of TR → 0 the
heat capacity is

CV = 2

(
�

2TR

)2

e−�/2TR , TR → 0. (25)

Although this is only true for δ = �/2, we see from the general
equation for the heat capacity given in Eq. (23) that the factor
of T −2

R is present for all terms and we have found numerically
that the dominating exponential terms in the optimized cooling
power (17) and the heat capacity (25) always cancel each other
as TR → 0.

III. RESULTS

We can now find the cooling rate dTR/dt for the discrete
system. In Fig. 4 we have plotted the cooling power Q̇R as a
function of the dimensionless variable TR/�. The solid line
is the result of our numerical calculations, while the dashed
line is the result from the original model [9]. We see that for
TR � � the discrete model reproduces the results from the
original model, while when TR � � the result changes to an
exponential form.

The heat capacity CV is shown as a function of the same
dimensionless variable TR/� in the inset in Fig. 4. Again the
results from the original model are reproduced for TR > �, but
when TR < �/2 a Schottky-like feature appears, indicating
that only the two levels closest to μ = 0 are participating in
the dynamics.

As we discussed earlier, if we can write the cooling rate in
a form like in Eq. (11), we require that α = λ − κ � 1. In the
original model with a continuous energy spectrum in the right
metal lead, it was found that α = 0. By numerically calculating
the expressions given in Eqs. (17) and (20), we find that the
cooling rate is given by

dTR

dt
∝ Q̇R

CV

∝ T 2
R, TR → 0. (26)

We obtain α = 2, which implies that cooling to absolute zero
is impossible in a finite amount of time, and the discrete model
is thus consistent with the unattainability principle. The result
is shown in Fig. 5, where we have plotted dTR/dt as a function
of TR/�. Also here the result from the discrete model (solid
line) reproduces the result from the original model (dashed
line) for TR � �, but once TR � � it differs.

Although the results from Eqs. (18) and (25) are only
valid for δ = �/2, we find numerically that the dominant
exponential term in Q̇tot

R always cancels with the one in CV .

The function ṪR

T 2
R

always converges to a constant value as

TR → 0, thus we conclude that the cooling rate ṪR ∝ T 2
R is

valid independent of the choice of δ.

IV. DISCUSSION AND CONCLUSION

We have shown that our natural modification of the model
proposed by Cleuren et at. does not violate the dynamic version
of the third law and allows for the same cooling performance at
temperatures TR > � as the original. This is a positive result,
which tells us that the original model can be used to cool very
efficiently down to the extreme limit of TR ∼ �, where the

FIG. 5. Plot of the optimized cooling rate dTR/dt as a function of
TR/�, Again we see that the discrete model (solid line) reproduces
the third law violating constant rate of temperature change of the
continuous model (dashed line) for TR � �. The inset shows CV as
a function of the same variable. When TR � �/2 the heat capacity
obtains a feature similar to the Schottky anomaly, indicating that the
main contribution to the heat capacity comes from the two levels (δ
and δ − �) closest to μ = 0. As a result, for TR � � the exponential
term in Q̇R cancels the one in CV and we are left with the T 2

R term from
the heat capacity. The parameters used are � = �s = 1, TL = 20 K,
TS = 6000 K, εg = 100 K, � = 1 K, and δ = �/2.

cooling power is quenched. Though we assumed a constant
level spacing �, the low-temperature behavior of the cooling
rate is insensitive to this assumption since at TR → 0 only the
two levels closest to the chemical potential are important.

The laws of thermodynamics are so general that they should
apply to both classical and quantum systems. The third law in
particular is a theory about the properties of a system as its
temperature approaches absolute zero and at low temperatures
quantum effects become important. Quantum theory predicts
that confined systems have discretized energy levels and when
the temperature T becomes comparable to the spacing between
energy levels �, this discreteness needs to be taken into
account. In [9] they use a continuous energy spectrum of
the metal lead, disregarding the quantum discreteness. In the
comments on the violation of the third law [10–13], they
employ a heat capacity derived from quantum theory and it
is this mixing of classical and quantum descriptions that leads
to the breaking of the unattainability principle. If instead we
use a pure classical expression for the heat capacity, which
would be a constant as given by the equipartition principle, the
unattainability principle would be satisfied [16].

One of the assumptions we have made is that the left hot
lead functions as a large heat bath and has no effect on the
cooling rate. A recent article [17] has shown that in a cooling
process the density of states of the left heat bath affects the
cooling rate of quantum refrigerators. A refined model where
we take into account the properties of the left lead would give
us additional insight into the nature of quantum refrigerators.

We have shown that the cooling power and cooling rate is
quenched when T ∼ �. The energy-level spacing in metals
is determined by the strength of confinement of the electrons.
By increasing the volume of the lead that is to be cooled, the
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spacing � will decrease. Therefore, the temperature where the
cooling power is quenched approaches absolute zero as the
volume goes to infinity. However, by increasing the volume of
the lead, the assumption of instantaneous equilibration of the
electrons according to the Fermi-Dirac distribution becomes
implausible; in reality, only a small area of the sample would be
cooled and the lead would be in a nonequilibrium state. Larger
leads also have a higher heat capacity and one must remove
more heat per degree of temperature change than for smaller
samples, which decreases the cooling efficiency. Finding the

limit of efficient cooling for real systems by balancing these
effects would be beneficial and relevant for future cooling
technologies.
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