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Quantum particle in a split box: Excitations to the ground state
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We discuss two different approaches for splitting the wave function of a single-particle box (SPB) into two
equal parts. Adiabatic insertion of a barrier in the center of a SPB in order to make two compartments which
each have probability 1/2 of finding the particle in it is one of the key steps for a Szilard engine. However, any
asymmetry between the volume of the compartments due to an off-center insertion of the barrier results in a
particle that is fully localized in the larger compartment, in the adiabatic limit. We show that rather than exactly
splitting the eigenfunctions in half by a symmetric barrier, one can use a nonadiabatic insertion of an asymmetric
barrier to induce excitations to only the first excited state of the full box. As the barrier strength goes to infinity
the excited state of the full box becomes the ground state of one of the new boxes. Thus, we can achieve close
to exact splitting of the probability between the two compartments using the more realistic nonadiabatic, not
perfectly centered barrier, rather than the idealized adiabatic and central barrier normally assumed.
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I. INTRODUCTION

The Szilard engine is a simple conceptual model of an
information processing system [1]. The classical model is a
single particle in a box, coupled to a thermal bath. By inserting
a movable barrier in the center of the box, the probability of
finding the particle in either compartment becomes 1/2. If we
now perform a measurement to find out which compartment
the particle is in, we generate one bit of Shannon information
which is stored in some memory. Since the box is coupled to
a thermal bath, we can extract work by allowing the compart-
ment in which we find the particle to expand and fill the whole
box. The maximum work extracted in this way is kBT ln 2,
and this is achieved by isothermal expansion. To complete

the cycle the memory is deleted, which has a minimum
energy cost of kBT ln 2, according to Landauer’s principle [2].
Therefore, if we perform reversible operations, the full cycle
of measurement, work extraction, and information deletion
generates no entropy. The quantum mechanical version of
the Szilard engine is similar, only now we are splitting the
wave function of the particle. The quantum measurement and,
assuming the memory is classical, deletion is similar to the
classical case, but there are subtle differences when it comes
to the insertion, expansion, and removal of the barrier [3].

The adiabatic theorem in quantum mechanics tells us that
a system remains in its instantaneous eigenstate as long as it
has a gapped energy spectrum and the perturbation acting on
it is slow enough to prevent transition between the eigenstates.
Based on this, it has been remarked in [4] that if the particle is
in the ground state and the barrier is inserted off-center, such
that one compartment is larger than the other, the particle will
always be localized in the larger compartment. This is because
the energy spectrum is proportional to L−2, where L is the
length of the compartment. The result is independent of how
small the asymmetry between the compartments is; any finite
difference between the compartment sizes will give the same
result.

With modern technology we can now experimentally re-
alize what was before only a thought experiment. In the last
decade, the creation of Szilard engines has been reported in
a range of physical systems: atoms [5–7], colloidal particles
[8,9], molecules [10], electrons [11–13], and photons [14].
In experiments the barrier is not inserted adiabatically nor
exactly in the center, and one can ask the question of how
the result of the previous paragraph changes when the barrier
is inserted at a finite rate.

Although a finite rate of insertion can make the probability
of finding the particle in the smaller compartment nonzero,
the downside is that a fast rate results in excitations to higher
energy levels. The Szilard engine measurement procedure
traditionally only determines which side of the box the particle
is found, not its exact eigenstate. Therefore excitation of
high energy states introduces additional entropy that is not
accounted for in the which-side measurement. Information is
therefore lost when performing the measurement, leading to
decreased efficiency of the Szilard engine.

Previous work [15] has studied the asymmetric insertion
of a δ potential barrier at high rates of insertion. In contrast
to their work, we expand the full wave function in its in-
stantaneous energy eigenstates and point out the fact that it
is possible to asymmetrically insert a barrier with a finite rate
and obtain very close to an equal probability distribution, with
negligible excitations to higher states than to the first excited
state. Therefore, the asymmetric Szilard engine with finite rate
of insertion of the barrier can have the same efficiency as the
symmetric Szilard engine with adiabatic insertion.

There are two fundamentally different ways to get an equal
probability of occupying the left and right box of a Szilard
engine. One way is to follow the usual protocol of splitting
a symmetric wave function into two exactly equal parts, i.e.,
inserting a barrier in the center of a box with a particle in
the ground state. Figure 1 shows the time evolution of the
eigenstates and eigenenergies when inserting a barrier with
time-dependent strength α(t ) (dashed vertical line), in the
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FIG. 1. Schematic of the three first eigenfunction and energies
for a symmetric box for three different values of the barrier strength
α(t ). (a) Initial state of the system, before the barrier is inserted.
(b) At an intermediate time before α(t ) → ∞. We see that when the
barrier is inserted at the center of the box it hits the nodes of the
antisymmetric eigenfunctions, and therefore there are no excitations
to this state [see Eq. (6)]. (c) The limit when α(t ) → ∞. The total
wave function is symmetric about the barrier, and the probability of
finding the particle in either compartment is 1/2.

center of the box. Figure 1(a) is the initial state of the system,
before the barrier has begun to be inserted. Figure 1(b) is
an intermediate step with 0 < α < ∞ before the two com-
partments have been completely isolated from each other in
Fig. 1(c) as α → ∞. The eigenstates in Fig. 1(c) are split
exactly in half, with a probability of 1/2 on either side.

The second way is to insert the barrier asymmetrically and
nonadiabatically, in such a way that only the first excited
state is excited; the eigenfunction of the ground state will
be large in the larger compartment and small in the smaller
compartment, and vice versa for the first excited state. This
method is illustrated in Fig 2. The initial state in Fig. 2(a),
before the barrier is inserted, is identical to that in Fig. 1(a).
However, as the barrier is increased via 2(b) through 2(c) the
symmetric eigenfunction becomes zero in the smaller com-
partment, while the antisymmetric becomes zero in the larger
compartment. Of course it has to be this way, since when

FIG. 2. Same as Fig. 1(a), but for an asymmetric box. (a) The
initial state of the system, identical to Fig. 1(a). Only now the
eigenfunction of the first excited state is nonzero at the point we
insert the barrier, allowing excitations from the ground state. From
the intermediate time step in (b) to the final state in (c) the eigen-
function of the ground and first excited states evolves such that
it is approximately zero in the smaller and larger compartments,
respectively.

α → ∞ what we have is essentially two rescaled copies of
the initial state. The third energy level in Fig. 2(a) becomes the
new first excited state of the larger compartment in Fig. 2(c),
while the first exited state in Fig. 2(a) becomes the new ground
state of the smaller compartment in Fig. 2(c). Only exciting
the first excited state of the original box still results in no
excitations after the measurement, since it becomes the new
ground state of the compartment.

A good thought experiment is never set in some compli-
cated system with many degrees of freedom. Rather, it is a
surprising result or counterintuitive implication obtained from
the study of a simplified model of reality. One might ask why
further study of a thought experiment that has already been
experimentally realized is necessary. In our opinion there are
two main reasons: The first reason is that studying all the
aspects of this conceptual model helps us to understand the
key physical effects that gave rise to the thought experiment
in the first place, and guides us in how to think about their
order of importance. The second reason is that even though
thought experiments can guide our understanding regardless
of whether it is possible to experimentally perform them, it
is also important to investigate whether they present practical
possibilities. They can act as benchmarks for testing how well
one can control the heat and entropy flow in experiments,
with the goal being to minimize heat waste in electronics. The
Szilard engine, with its measurement and memory scheme, is
ideal in this sense.

In the rest of this article we address the two following
questions related to how we can limit excitations to the first
excited level only, using a simple protocol for the barrier
insertion: How sensitive is the nonadiabatic splitting of the
wave function to asymmetry in barrier insertion, and what is
the probability of exciting states higher than the lowest two
when we insert the barrier with a finite rate.

II. ANALYSIS

The box is shown in Fig. 2 and is defined by the potential
V (x) = 0 for x ∈ [−a, b] and V (x) = ∞ elsewhere. The bar-
rier is a δ function with time-dependent strength α(t ) inserted
at x = 0. We choose the barrier to be a δ function since it
allows presenting the eigenstates in analytical form. A barrier
with finite width was used in [4], while in [15] they used
a δ function barrier and obtained similar results. The width
of the barrier would only affect the tunneling rate between
the compartments, but the qualitative results would remain
unchanged. The insertion of the barrier is described by a
time-dependent Hamiltonian given by

Ĥ (t ) = − h̄2

2m

∂2

∂x2
+ α(t )δ(x), (1)

where m is the mass of the particle. The instantaneous eigen-
functions |ψn(t )〉 that evolve are found as the solution to the
time-independent Schrödinger equation

Ĥ (t ) |ψn(t )〉 = E (t ) |ψn(t )〉 . (2)

At any given time the instantaneous eigenfunctions is an
orthonormal set 〈ψn|ψm〉 = δn,m. Therefore the total wave
function |�(t )〉, which is the solution of the time-dependent
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Schrödinger equation

ih̄ ∂t |�(t )〉 = Ĥ |�(t )〉 , (3)

can be expressed as a linear combination of them

|�(t )〉 =
∑

n

cn(t ) |ψn(t )〉 eiθn (t ), θn = −1

h̄

∫ t

0
En(t ′)dt ′.

(4)

Here cn(t ) is a set of complex constants satisfying∑∞
n |cn(t )|2 = 1. As shown in Appendix A, the system of

coupled differential equations giving the time evolution of the
coefficients {cn} is

ċn(t ) = −
∑
m �=n

cm(t )
〈ψn(t )|∂t Ĥ |ψm(t )〉

Em − En
ei(θm−θn ). (5)

We first need to find the instantaneous solutions |ψn(t )〉 for
the asymmetric barrier problem, and the details of these
calculations are given in Appendix B. After finding the in-
stantaneous solutions we numerically solve Eq. (5) to find the
time evolution of |�(t )〉.

III. RESULTS

Let us now see to what extent it is possible to make the
probability of finding the particle in either compartment equal
(or as close to equal as possible), while limiting excitations to
higher energy states.

We set the total length of the box equal to L = a + b = 1,
and define a = 1/2 + ε, where ε is the asymmetry parameter
that determines how much larger the compartment on the left
side of the barrier is than the one on the right side. We also
set h̄ = m = 1. The initial state is chosen to be the ground
state, which is c1(0) = 1 and cn(0) = 0 for n > 1. We found
that including the six first eigenstates was sufficient to capture
all the excitations for the insertion rates we explored. We set
the maximum strength of the barrier at the end of the protocol
(t = τ ) to α(τ ) = 400 E0, where E0 is the ground state of the
box of L = 1 without a barrier. This value was chosen to make
sure that the coefficients {cn(τ )} converged to constant values.

For the protocol we chose α(t ) = At2, where A is some
constant that determines the rate of insertion. We also tried a
linear protocol, but found that in order to limit higher-order
excitation the rate of insertion had to start small and steadily
increase as a function of time. The reason for this can be
understood by studying the coupling between the {cn(t )} in
Eq. (5) at a given time t

〈ψn(t )|∂t Ĥ |ψm(t )〉
Em − En

= α̇(t )
〈ψn(t )|δ̂(x)|ψm(t )〉

Em − En
. (6)

When we insert the barrier, the probability of finding
the particle at the insertion point decreases in proportion
to the strength of the barrier. Therefore the numerator,
〈ψn(t )|δ̂(x)|ψm(t )〉, which measures overlap between the
eigenstates at the insertion point, will be largest in the be-
ginning and decrease toward zero as the barrier strength is
increased. This prevents transitions for high barriers. The
denominator is the energy difference between the eigenstates,
Em − En, and its dependence on the barrier strength is shown

FIG. 3. Energy levels as a function of time. We see that the
odd energy levels approach the evens as the strength of the barrier
increases, and the final spacing between them decreases with the
magnitude of the asymmetry.

in Fig. 3. The energy difference between the ground state
and the first exited state is largest in the beginning and
asymptotically approaches a final small value that increases
with the asymmetry between the compartments. This makes
transition between these more likely as the barrier strength
increases.

In Fig. 4 we plot the ratio 〈ψ1(t )|δ̂(x)|ψm(t )〉 /(Em − E1)
and interpret its magnitude as an indication of the coupling
strength between the ground state and the mth eigenstate.
As argued in the previous paragraph we see that indeed the
ground state’s coupling to the first excited state dominates
over its coupling to other eigenstates once the barrier has
reached a certain strength (	4 E0 in this example, where ε =
0.1). As seen in Eq. (6), we can control the coupling strength
via α̇(t ). By choosing a α̇(t ) that is small in the beginning
and large toward the end of the protocol, we suppress early

FIG. 4. Dependence of the ratio 〈ψ1(t )|δ̂(x)|ψm (t )〉
Em−E1

on the strength of
the barrier α. Its magnitude gives us an indication of the coupling
between the ground state and the higher excited states. We see that
the coupling between the ground state and the first excited state
remains substantial for high values of α, while all the others decay
quickly. This indicates that we can induce transitions between those
two levels without exciting higher states when α is large. This plot
was obtained with ε = 0.1.
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FIG. 5. Probability of finding the particle in the largest compart-
ment (solid lines), as a function of the barrier insertion rate constant
A and the asymmetry parameter ε. The probability to excite levels
higher than the first excited state is shown in the dashed lines.

transitions between the levels when 〈ψn(t )|δ̂(x)|ψm(t )〉/
(Em − En) is large. Since the energy difference between the
ground state and the first excited state becomes much smaller
than the difference between the ground state and any of the
higher states, we can induce transitions between them, even
when the wave function overlap is very small, if we choose a
α̇(t ) that is suitably large.

In Fig. 5 we show a contour plot of the probability of
finding the particle in the bigger compartment (solid lines)
at the end of the protocol as a function of the asymmetry
parameter ε/L and the insertion rate parameter A. We see that
even for asymmetries of the order of ε ∼ 0.01 the probability
of finding the particle in the bigger compartment is quite large.
Although increasing the barrier faster makes the probabilities
of finding the particle in either side more equal it also incurs
a penalty; the faster you increase the barrier the more likely it
is that you excite higher-order states in the energy spectrum.
Higher-order excitations increases the entropy of the system,
since the internal states of the Szilard engine are assumed to
be either the ground state (bigger compartment) or the first
excited state (smaller compartment).

IV. SUMMARY AND DISCUSSION

When designing a Szilard engine one wants the probabili-
ties of finding the particle in either compartment after barrier
insertion to be equal. Experimentally it might be difficult
to design a perfectly symmetric double-well potential. We
point out the fact that excitations to the first excited state are
special in the sense that after the barrier strength becomes high
enough to stop tunneling between the two compartments, and
a measurement to determine which compartment the particle
is found is performed, the system is still in the ground state
for the relevant compartment. This is a generic result, but
exactly how to limit the excitations to only the first excited
state depends on the specific protocol α(t ). We have used
a simple protocol that is quadratic in time as an example,
and investigated how sensitive the probability distribution of
the divided single-particle box is to asymmetry between the
compartment size. We find that for this protocol even small

differences between the width of the compartments, results
in a probability distribution that is skewed toward the larger
compartment. The faster one increases the barrier strength,
the more even the final distribution becomes. However, this
rapid increase also leads to higher-order excitations in the box,
which results in unwanted entropy production. The question
remains whether a protocol can be constructed such that it
gives an equal final distribution between the left and right side,
and how sensitive it is to variations in the asymmetry.
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APPENDIX A: WAVE FUNCTION FOR TIME-DEPENDENT
HAMILTONIAN

In this section we follow [16] (Sec. 10.1.2) and write the
total wave function |�(t )〉 as a linear combination of the
instantaneous eigenstates |ψ (t )n〉 and derive the coupled dif-
ferential equation for the coefficients. When the Hamiltonian
changes with time, the eigenfunctions and eigenvalues are also
time dependent,

Ĥ (t ) |ψn(t )〉 = En(t ) |ψn(t )〉 . (A1)

The eigenfunctions at any given time is an orthonormal set,
〈ψn(t )|ψm(t )〉 = δn,m, and the total wave function which can
be found as the solution of the time-dependent Schrödinger
equation

ih̄ ∂t |�(t )〉 = Ĥ |�(t )〉 (A2)

can be expressed as a linear combination of them:

|�(t )〉 =
∑

n

cn(t ) |ψn(t )〉 eiθn (t ), (A3)

where

θn = −1

h̄

∫ t

0
En(t ′)dt ′. (A4)

Inserting this linear combination into the time-dependent
Schrödinger equation gives us

ih̄
∑

n[ċn |ψn〉 + cn |ψ̇n〉 + icn |ψn〉 θ̇n]eiθn (A5)

= ∑
n cnĤ |ψn〉 eiθn . (A6)

Now since θ̇n = −En/h̄ and Ĥ |ψn〉 = En |ψn〉, the right-hand
side exactly cancels the last term on the left-hand side and we
are left with ∑

n

[ċn |ψn〉 + cn |ψ̇n〉]eiθn = 0. (A7)

We now take the inner product with the eigenfunction ψm,
and since the eigenfunctions constitute an orthonormal set at
any given time t , we obtain a set of N coupled differential
equations for the N coefficients cn, n ∈ [1, N].

∑
n

[ċnδm,n + cn 〈ψm|ψ̇n〉]eiθ = 0, (A8)

ċm(t ) = −
∑

n

cn 〈ψm|ψ̇n〉 ei(θn−θm ). (A9)
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We can rewrite this equation by taking the time derivative of
Eq. (A1) and then the inner product with ψm to obtain

〈ψm| ˙̂H |ψn〉 + Em 〈ψm|ψ̇n〉 = Ėδm,n + En 〈ψm|ψ̇n〉 , (A10)

which shows us that the inner product 〈ψm|ψ̇n〉 can be
written as

〈ψm|ψ̇n〉 = 〈ψm| ˙̂H |ψn〉
En − Em

, (A11)

as long as the system is nondegenerate and n �= m. Putting this
result into Eq. (A9) we get

ċm = −cm 〈ψm|ψ̇m〉 −
∑
n �=m

cn
〈ψm| ˙̂H |ψn〉

En − Em
ei(θn−θm ). (A12)

This form of the differential equation is particularly well
suited to our problem. First, the Hamiltonian contains a δ

function at x = 0, so the integral 〈ψm| ˙̂H |ψn〉 is simply given
by (using the eigenfunctions from Appendix B)

〈ψm| ˙̂H |ψn〉 = α̇AnAm sin(kna) sin(kma). (A13)

In addition, the term 〈ψm|ψ̇m〉 is always zero. This is be-
cause the instantaneous eigenfunctions |ψm〉 are orthonormal
(〈ψm|ψm〉 = 1) and real:

∂

∂t
〈ψm|ψm〉 = 〈ψ̇m|ψm〉 + 〈ψm|ψ̇m〉 = 0. (A14)

Since 〈ψm|ψ̇m〉 = 〈ψ̇m|ψm〉∗ we get

〈ψm|ψ̇m〉 = − 〈ψm|ψ̇m〉∗ → Re[〈ψm|ψ̇m〉] = 0. (A15)

Therefore the coupled differential equations we need to solve
become

ċm = −
∑
n �=m

cn
〈ψm| ˙̂H |ψn〉

En − Em
ei(θn−θm ). (A16)

APPENDIX B: ASYMMETRIC BARRIER

We can find the stationary states from the time-independent
Schrödinger equation and they have the form

ψ (x) =
{

A sin[k(x + a)], x ∈ [−a, 0],
B sin[k(x − b)], x ∈ [0, b], (B1)

where k = √
2mE/h̄. At x = 0 the wave function is con-

tinuous while its derivative has a discontinuity. These two
conditions are

lim
ε→0

[ψ (0 − ε) − ψ (0 + ε)] = 0, (B2)

lim
ε→0

[ψ̇ (0 + ε) − ψ̇ (0 − ε)] = 2mα

h̄2 ψ (0), (B3)

and for our system they result in

A sin(ka) = −B sin(kb), (B4)

B cos(kb) − A cos(ka) = 2mα

kh̄2 A sin(ka). (B5)

Combining these equations gives us another one, which we
can solve numerically to find the wave vectors k for a given
a, b, and α.

sin[k(a + b)] = −2mα

kh̄2 sin(ka) sin(kb). (B6)

The solutions to this equation defines a discrete set of allowed
values for the wave vector k → kn, n = 1, 2, . . . , which de-
termines the energy spectrum of the system via

En = h̄

2m
k2

n . (B7)

The wave function has to be normalized on the domain of x,∫ 0

−a
A2

n sin2[kn(x + a)] +
∫ b

0
B2

n sin2[kn(x − b)] = 1, (B8)

which combined with Eq. (B4) gives us the normalization
constants An

A2
n =

[
a

2
− sin(2kna)

4kn
+ sin2(kna)

sin2(knb)

(
b

2
− sin(2knb)

4kn

)]−1

.

(B9)

Bn can be found via Eq. (B4).
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